

Upon completion of this unit, the student will be able to: - List the assumptions of the chi square test. - Describe when the chi square test is appropriate for testing a hypothesis. - Discuss the special circumstances when variations of the chi square test, such as Yates correction and Fisher's exact test, should be used. - Use SPSS to conduct a chi square test and correctly interpret the output.

Statistical Methods to Test Hypotheses

Scale of	Two Treatment Groups Consisting of	Three or More Treatment Groups	Before and After a Single Treatment in the	Association Between
Measurement	Different Individuals	Consisting of Different Individuals	Same Individuals	Two Variables
Interval	Unpaired t test	ANOVA	Paired t test	Linear Regression and Pearson Correlation
Nominal	Chi-square	Chi-square	McNemar's test	Contingency Coefficients
Ordinal	Mann-Whitney rank-sum test	Kruskal-Wallis statistic	Wilcoxon signed-rank test	Spearman Rank Correlation

HSCC 470 Using SPSS: The Chi Square Test

1

Assumptions of the Chi Square Test

- Frequency data
- · Data measured on nominal level
- 2 or more groups are being compared
- · The groups are independent
- Data need not be drawn from a normally distributed population
- Comparing frequencies or proportions
- For 2 X 2 tables, expected frequency $(F_e) \ge 5$ in all cells
- For larger tables, $F_e \ge 5$ in at least 75% of cells, and $F_e \ge 1$ in remaining cells

HSCC 470 Using SPSS: The Chi Square Test

Special Circumstances with Chi Square

- 2 X 2 contingency tables
- "An AAS degree in EMS should be the minimum entry level qualification for a paramedic in NC."

	Agree	Disagree
Hold Degree	24	12
No Degree	6	18

• Use Yates correction (continuity correction) for 2 X 2 tables.

HSCC 470 Using SPSS: The Chi Square Test

.

Special Circumstances with Chi Square

	Agree	Disagree	Row Total
Hold Degree	24	12	36
No Degree	6	18	24
Column Total	30	30	60

- F_{e} (agree who hold degree) = $(36 \times 30)/60 = 18$
- When the expected frequencies (F_e) of a 2 X 2 table are less than 5, use Fisher's exact test.

HSCC 470 Using SPSS: The Chi Square Test

Misuses of the Chi Square Test

- Failure to describe exactly how the data were categorized and the analysis performed
- Using the Chi Square when the F_o are too small
- Computing the Chi Square for percentages rather than the actual frequencies
- Categories are not mutually exclusive
- Using Chi Square to detect association when the variables are ordinal or interval level.

HSCC 470 Using SPSS: The Chi Square Test

7

Conducting a Chi Square Test Using SPSS continued

- Assumptions
 - Scale of measurement
 - · Nominal or ordinal
 - Population distribution
 - · Any distribution
 - Method of sampling
 - Randomized, 2 or more independent samples
 - Sample size
 - Certificate N = 23
 - AAS N = 26
 - BS N = 23

HSCC 470 Using SPSS: The Chi Square Test

Q

Conducting a Chi Square Test Using SPSS continued

- Hypotheses
 - Null
 - There is no difference in the pass rates on the NREMT-P practical exam among certificate, AAS, or BS degree paramedics.
 - Alternative
 - There is a difference in the pass rates on the NREMT-P practical exam among certificate, AAS, or BS degree paramedics.
 - Select Alpha Level
 - Alpha = 0.05
- Test statistic
 - Chi Square

HSCC 470 Using SPSS: The Chi Square Test

9

Conducting a Chi Square Test Using SPSS continued

- P-value
 - -P = 0.6943
- Conclusion
 - P value is greater than alpha. Therefore, we cannot reject the null hypothesis and conclude that there is no difference in pass rates on the NREMT-P practical exam among certificate, AAS, or BS paramedics.

HSCC 470 Using SPSS: The Chi Square Test

15

Yates Correction and Fisher's Exact Test

	Agree	Disagree	Row Total
Hold Degree	24	12	36
No Degree	6	18	24
Column Total	30	30	60

- For 2 X 2 contingency tables, use Yates correction.
- When the expected frequencies (F_e) of a 2 X 2 table are less than 5, use Fisher's exact test.

HSCC 470 Using SPSS: The Chi Square Test

16

Yates Correction and Fisher's Exact Test continued

- Hypotheses
 - Null
 - There is no difference in the proportions of paramedics who favor AAS degrees as an entry level requirement, based upon whether or not they themselves hold a degree.
 - Alternative
 - There is a difference in the proportions of paramedics who favor AAS degrees as an entry level requirement, based upon whether or not they themselves hold a degree.
 - · Select Alpha Level
 - Alpha = 0.05
- · Test statistic
 - Chi Square

HSCC 470 Using SPSS: The Chi Square Test

17

Yates Correction and Fisher's Exact Test continued • P-value • Conclusion HSCC 470 Using SPSS: The Chi Square Test

Summary of Chi Square Interpretation

- Meets assumptions
- Evaluate minimum expected cell frequency
- If $F_e < 5$ for any cell, use Fisher's Exact Test
- For 2X2 tables, use continuity correction
- · All others, use Pearson Chi square

HSCC 470 Using SPSS: The Chi Square Test

23