

Unit Objectives

- Upon completion of this chapter, you should be able to:
 - Name the different blood groups and types in humans and their approximate percentages in the U.S. population.
 - Describe the basic blood components that may be utilized in emergency medicine and the indications for the use of each product.
 - Explain how the decision to use blood resuscitation is made.
 - Describe the term autotransfusion and the role it plays in transfusion medicine.
 - Describe the selection of blood in an emergency situation.
 - Define the advantages and disadvantages of blood substitutes.
 - List the rationale in the choice of needle size, filter type, and concurrent fluids utilized in a transfusion.

Unit Objectives continued

- Describe the more common transfusion reactions and the treatment for each.
- Compare and contrast crystalloid and colloid solutions.
- Discuss the existing controversy over fluid resuscitation in the hemorrhaging patient.
- Explain the various techniques that can be used to insert large-bore catheters.
- List the most common sites used for venous access.
- Explain the technique for adult intraosseous infusions.
- Explain the procedure for intravenous access using the Seldinger technique.
- Explain the techniques for external jugular cannulation, femoral vein cannulation, and saphenous vein cutdown.

Chapter 20. Fluid Resuscitation

Introduction

- Blood pressure is maintained by manipulating the colloid osmotic pressure and vasoconstriction
- Blood is also shunted from the kidneys and digestive tract to conserve both oxygen and energy.
- Crystalloid infusion has a long history in field treatment of trauma
- Crystalloids maintain circulating volume but offer no mechanism for transporting oxygen
- Fluid resuscitation, like PASG application, is very controversial in terms of the initial management of the trauma victim.

- Electrolyte balanced solutions that do not contain protein
- Advantages
 - Inexpensive, lack of allergic response, long shelf life, ease of storage
- Plasma has an osmotic pressure of 300 mosm
- Hypotonic D₅W (252 mosm)
- Isotonic 0.9% sodium chloride (310 mosm) and lactated ringer's solution (275 mosm) expand fluid in 1:4 ratio.
- Hypertonic hypertonic saline/dextran (HSD) and hypertonic saline (HTS) provide rapid shifts of fluid into the intravascular space. No clearly defined impact on survival. **6** 5

- Small infusions create large shifts in fluids
- Serum Albumin
 - Protein derived from human blood
 - Remains in the intravascular space for 16 hours
 - May impair the immune system
 - Expensive, requires human donors, may cause pulmonary edema or ARDS if infused too rapidly
 - Cannot carry oxygen
 - Dosage: 2 4 cc/min of 5% albumin

Colloids continued

- 12 24 hour dwell time
- Small infusion results in large fluid shifts
- Less expensive than albumin
- Lacks disease risks of albumin
- May impair immune system
- Interferes with coagulation
- Interferes with cross-matching for blood and with glucose values
- Lacks ability to carry oxygen
- Available as dextran 40 or dextran 70
- Dosage: 2 mg/kg

Chapter 20. Fluid Resuscitation

Colloids continued

- Hydroxyethyl Starch (hetastarch or Hespan)
 - Large, synthetic molecule
 - Interferes with coagulation
 - 24 hour dwell time
 - Dosage: 20 cc/kg
 - 1:1 replacement ratio

Blood Substitutes

- Stroma-free hemoglobin
 - Experimental
 - · Old RBCs with cell membranes removed
 - · Designed to transport oxygen
 - Difficulty with releasing oxygen to the tissues
 - Free hemoglobin in circulation is toxic to some organs
- Perflourocarbons
 - Experimental
 - · No need for cross-matching
 - Carry oxygen to the cells and remove carbon dioxide
 - Rapidly excreted which means infusion must be constant
 - Stored frozen and must be reconstituted before use

Chapter 20. Fluid Resuscitation

Crystalloids, Colloids, and Blood

 Controversial with no conclusive evidence of effectiveness of crystalloids and colloids

- Increased bleeding and hemodilution
- Presently, only blood transports oxygen

History of Blood Therapy

- First human to human transfusion in London in 1818
- Early experimentation plagued by reactions and death
- ABO blood groups discovered in 1901

ABO Group	Antigens on Red Cells	Antibodies in Plasma
Α	Α	В
В	В	Α
АВ	A and B	None
0	None	A and B

- Most commonly used component in trauma
- Made by removing plasma from whole blood
- Anticoagulants added
- 21 day shelf life
- Stored at 1 6 degrees C
- Used to increase oxygen carrying capacity in the setting of acute blood
- One unit equals 250 cc

Chapter 20. Fluid Resuscitation

Basics of Blood Therapy continued

Whole blood

- Entire unit of blood including all cells and plasma
- Increases oxygen carrying capacity and volume
- Fresh whole blood is best choice in acute hemorrhage because it contains viable platelets and coagulation factors necessary for clotting
- Rarely stocked in many hospital blood banks

Fresh Frozen Plasma (FFP)

- Contains all coagulation factors present in the blood stream
- Coagulation factors are destroyed upon storage in blood
- Plasma is removed from whole blood and quickly frozen to preserve clotting factors
- Primarily used to treat coagulation deficiencies
- Not used to expand plasma volume, but may be used in the treatment of burns to repair damaged capillaries

Basics of Blood Therapy continued

- Play an essential role in hemostasis and maintenance of capillary integrity
- Prepared by centrifuging fresh whole blood or through platelet pheresis
- Stored at 20 24 degrees C
- Can be stored for up to 5 days
- Used in patients suffering from thrombocytopenia

Chapter 20. Fluid Resuscitation

Blood Selection for Trauma Situations

- Normally, the patient's blood is grouped (A.B.O. AB), typed (Rh +/-), crossmatched (compatibility), and screened for antibodies that may cause an adverse reaction. This process takes up to 1 hour.
- Type and screen may be used when transfusion is unlikely
- **Emergency Release of Blood**
 - O Negative Packed Cells
 - Group and Type Specific
 - · Requires 15 minutes
 - Autotransfusion
 - Autologous (donated and stored)
 - Autotransfusion (recovered, filtered and washed)

Blood Administration

- · Must be filtered
- Must be infused through catheters of at least 18 gauge
- Patient identification is imperative.
- Inspect the product for impurities.
- Obtain a set of vital signs (including temperature).
- Infuse slowly during the first 15 minutes.
- Change blood filters every 2 units.
- Observe site for signs of infiltration and phlebitis.
- · Monitor patients closely for signs of reaction.
- · Infuse within 4 hours of hanging.

Chapter 20. Fluid Resuscitation

2

Complications of Transfusions

Febrile Reaction

- Most common, mild reaction
- Occur more often in patients who have previous reactions
- S&S
 - Fever
 - · Chills
 - · Hypotension (rare)
 - Dyspnea (rare)
 - · Tachycardia (rare)
- Treatment
 - · Stop the infusion
 - · Keep IV open with normal saline
 - · Aspirin or acetaminophen may be ordered

Complications of Transfusions continued

- Second most common reaction
- Usually not dangerous but can cause discomfort for the patient
- S&S
 - Itching
 - Redness
 - Hives
 - · Fever (sometimes)
- Treatment
 - Stop the transfusion
 - · Keep IV open with normal saline
 - · Be prepared to administer benadryl, theophylline, epinephrine or steroids

Chapter 20. Fluid Resuscitation

Complications of Transfusions continued

Anaphylactic

- Similar to allergic reactions but more severe
- S&S
 - · Rapid onset (within first few cc's of transfusion)
 - Flushing
 - · Bronchial spasms
 - Urticaria
 - Shock
 - Hypotension
 - Dyspnea
 - Angioedema
 - Nausea
 - Decreased LOC
 - · Fever is NOT observed
- Treatment
 - · Same as for allergic reaction, plus oxygen and IV fluids

Complications of Transfusions continued

- Not usually a concern in trauma, but may occur in pediatrics, geriatrics, and patients with chronic anemia
- S&S
 - · Chest pain
 - Coughing
 - Cyanosis
 - Tachycardia
 - Dyspnea
 - Hypertension
- Treatment
 - · Stop the transfusion
 - · Keep IV open with normal saline
 - Oxygen
 - Diuretics

Chapter 20. Fluid Resuscitation

Hemolytic Reactions

- Destruction of red blood cells
 - Intravascular hemolysis
 - Occurs rapidly releasing hemoglobin into circulating
 - Life-threatening
 - Red cell lysis
 - Does not occur intravascularly
 - No release of hemoglobin
 - Milder reaction
- Hemolytic reaction severity is dose related

Complications of Transfusions continued

Acute Hemolytic Reaction

- Almost always due to an ABO incompatibility and almost always the result of clerical error
- S&S
 - Fever
 - Chills
 - DIC
 - Nausea
 - Chest pain
 - Dyspnea
 - Flank pain
 - · Hypotension
 - · Abdominal pain
 - Flushing
 - · Hemoglobinuria
 - · Acute renal failure

Chapter 20. Fluid Resuscitation

Complications of Transfusions continued

Acute Hemolytic Reaction continued

- Treatment
 - Stop the transfusion
 - Keep IV open with normal saline
 - Infuse IV fluids to maintain renal perfusion and treat shock
 - Pressure support may be necessary using vasopressors

Complications of Transfusions continued

- Milder reaction that occurs in patients previously Sensitized during pregnancy or previous transfusions
- May occur 1 to 14 days following transfusion
- Results in lysing of transfused cells
- S&S
 - Fever
 - · Chills (sometimes)
 - Anemia
 - Mild jaundice
- Treatment
 - Usually not required
 - When required, same as for acute hemolytic reaction

