

Unit Objectives

- Upon completion of this chapter, you should be able to:
 - List the 5 forms of energy.
 - Describe the physical properties of kinetic energy.
 - Discuss the role of kinetic energy in producing injury.
 - Describe occupant kinematics for the 5 types of motor vehicle collisions and discuss the clinical implications of each.
 - Describe the kinematics of motorcycle collisions.

Unit Objectives continued

- Describe the 4 impact configurations of motorcycle collisions and the clinical implications of each.
- Discuss the 6 components of wound ballistics and their clinical implications.
- List and describe the 4 types of blast injuries and their clinical implications.
- Define the role of injury biomechanics in the assessment of the trauma patient.

Chapter 5. Biomechanics of Trauma

Introduction

Major differences between trauma and medical assessment.

 Suspicion of injury requires thorough understanding of biomechanics.

History and scene survey will predict

Introduction continued

- Scene Assessment and the 3 phases of injury:
 - -Pre-event phase
 - -Medical conditions
 - -Events preceding collision
 - -Event phase
 - -Most important, but rarely witnessed by EMS
 - -Injury occurs
 - -Must rely on physical clues left at the scene
 - -Post-event phase
 - -Analyze physical evidence and predict injuries
 - -Kinematics and injury biomechanics

Chapter 5. Biomechanics of Trauma

Energy

- Release of energy into human tissue is the origin of injury.
- Human tolerance
 - Magnitude, duration, physical condition of patient, form of energy
- Five forms of energy
 - Kinetic
 - Electrical
 - Chemical
 - Thermal
 - Radiation

Chapter 5. Biomechanics of Trauma

Energy continued

- Newton's first law (law of inertia)
 - An object at rest will remain at rest and an object in motion in a straight line will maintain that motion unless acted upon by some external force. Applies equally to vehicles and occupants.
- Newton's second law
 - The acceleration of an object is directly proportional to the force acting on it and inversely proportional to its mass.

Chapter 5, Biomechanics of Trauma

Energy continued

- Newton's third law
 - For every action, there is an equal and opposite reaction.
- Force

force = mass x acceleration

 $g force = \frac{\text{MPH velocity change}^2}{30 \text{ x feet of stopping distance}}$

Energy continued

- Law of conservation of energy
 - Energy is neither created, nor destroyed, but can only be changed in form or transferred among objects.
- Kinetic energy

Energy continued

- Example of kinetic energy
 - 150 pound occupant travelling at 60 mph has 18, 060 ft/lbs of kinetic energy

Energy continued

Chapter 5. Biomechanics of Trauma

Energy continued

- Energy transfer and the five forms of energy
 - Motor vehicle collision
 - Bullet
- Preventing energy transfer
 - Injury prevention efforts
 - Engineering efforts

Chapter 5. Biomechanics of Trauma

72

78

Chapter 5. Biomechanics of Trauma

72

721

Local

Deceleration

Blast Injuries continued

- Types of blast injuries continued
 - Primary blast injury continued
 - Shock wave continued
 - Over/under pressurization
 - Spalling
 - Implosion
 - Propellants
 - » Gun powder
 - High explosives
 - » C4 (4M psi)
 - » Trinitrotolulene

Chapter 5. Biomechanics of Trauma

Blast Injuries continued

 Debris may be carried miles away

Blast Injuries continued

- Types of blast injuries continued
 - Tertiary blast injury
 - Blast winds
 - Impact with ground
 - Blast-associated injury
 - Environment
 - 1993 world trade center

u.s. embassy at nairobi, kenya

43