Number Needed to Treat (NNT) #### **Definition** The NNT is the number of patients who need to be treated in order to prevent one additional bad outcome. It is the inverse of the <u>Absolute</u> Risk Reduction (ARR). #### **How to Calculate NNTs** ``` NNT = 1/ARR ARR = |CER - EER| where CER = control group event rate EER = experimental group event rate ``` ### **Sample Calculation** Western Carolina University conducted a study of prehospital continuous positive airway pressure (CPAP) in the management of acute pulmonary edema. Death occurred in 23% of patients who received standard therapy (oxygen, lasix, nitroglycerine, morphine) compared with 5% of patients who received CPAP. The number of patients we need to treat with CPAP to prevent one additional death can be determined by calculating the absolute risk reduction as follows: Note: Convert all percentages to their decimal equivalents. ``` ARR = |CER - EER| = |0.23 - 0.05| = 0.17 NNT = 1/ARR = 1/0.17 = 5.88 or 6 ``` We therefore need to treat 6 pulmonary edema patients with CPAP in the field to prevent one death. ### **Number Needed to Harm** #### **Definition** The **number needed to harm** (NNH) is an epidemiological measure that indicates how many patients would require a specific treatment to cause harm in one patient from a side effect or untoward event. It is defined as the inverse of the Absolute Risk Increase (ARI). #### **How to Calculate NNHs** Calculating NNH is similar to calculating NNT except that instead of using absolute risk reduction (ARR) we instead use absolute risk increase (ARI) because we are concerned about the <u>increase</u> in a side effect or untoward event. ``` NNT = 1/ARI ARR = |CER - EER| where CER = control group event rate EER = experimental group event rate ``` #### **Sample Calculation** For example, the drug warfarin, which reduces the risk of ischemic stroke, increases the risk of gastrointestinal bleeds. Let's assume that 7.6% of patients taking warfarin for stroke prevention experience GI bleeding compared with 1.5% of patients who do not take warfarin. ``` ARI = |CER - EER| = |0.076 - 0.015| = 0.061 NNH = 1/ARI = 1/0.061 = 16 ``` Therefore, for every 16 patients placed on chronic warfarin therapy we can expect one of them to develop GI bleed. The NNH is an important measure in evidence-based medicine and helps clinicians decide whether it is prudent to proceed with a particular treatment. If a clinical endpoint is devastating enough without the drug (e.g. death, heart attack), drugs with a low NNH may still be indicated in particular situations if the number needed to treat, or NNT, (the converse for side-effects, or the drug's benefit) is less than the NNH. ## **Examples of Studies Reporting Number Needed to Treat** Cardiology | Condition or Disorder | Intervention vs.
Control | Outcome | Follow-
up
Duration | Event Rates
% | | NNT
(95%
CI) | |--|--|-----------------------------------|---------------------------|------------------|------|---------------------------| | | | | | CER | EER | | | Acute myocardial infarction ¹ | Angiotensin-
converting enzyme
(ACE) inhibitors
vs. placebo | Mortality | 30 days | 7.6 | 7.1 | 210
(125
to
662) | | Acute myocardial infarction ² | Angiotensin-
converting enzyme
(ACE) inhibitors
vs. placebo | Nonfatal heart
failure | 30 days | 15.2 | 14.6 | 165
(111
to
488) | | Cardiovascular events in treated hypertension ⁸ | Aspirin vs. placebo | Major
cardiovascular
events | 3.8 years | 3.9 | 3.4 | 176
(90 to
3115) | | | | Myocardial
infarction (MI) | | 1.4 | 0.9 | 208
(127
to
551) | | Chronic heart failure
(CHF) ¹⁰ | Exercise vs. no exercise | Death | 3.4 years | 40.8 | 18 | 5
(3 to
21) | | | | All cardiac
events | | 75.5 | 34 | 3
(2 to
5) | | | | Hospitalization
for CHF | | 28.6 | 10 | 6
(3 to
32) | | Patients resuscitated from ventricular arrhythmias; use of implantable cardioverter-defibrillators (ICD) in reducing mortality ¹⁷ | ICD vs.
antiarrhythmic
drug therapy | All-cause
mortality | 18 months | 24 | 16 | 13
(8 to
30) | ## Neurology | Condition or
Disorder | Intervention vs.
Control | Outcome | Follow-up
Duration | Event Rates
% | | NNT
(95%
CI) | |---|--|--|-----------------------|------------------|------|----------------------| | | | | | CER | EER | | | Alcohol-related seizures ¹ | Lorazepam vs.
placebo | Occurrence of a second seizure | 6 hours | 24 | 3 | 5
(4 to
9) | | Care for acute stroke victims ² | Patients were
allocated to a Stroke
unit or to Ward care | Proportion of patients living at home | 5 years | 18.2 | 34.5 | 6
(4 to
21) | | Acute stroke unit care ⁴ | Stroke unit vs.
general ward care | Quality of life
measured by the
Frenchay Activity
index ≥ 30 points | 5 years | 40.6 | | 5
(2 to
80) | | Non-disabling
stroke; carotid
endarterectomy ⁵ | Carotid
endarterectomy vs.
medical care | Ipsolateral stroke | 5 years | 18.7 | 13.1 | 18
(10 to
186) | | | | Any stroke | | 26.4 | 19.8 | 15
(8 to
100) | | | | Stroke or death | | 36.4 | 27.9 | 12
(7 to
44) | | | | Disabling stroke or death | | 20.1 | 14.9 | 19
(10 to
783) |