Autonomic Pharmacology

Drugs Affecting the Autonomic Nervous System

Objectives

- Recognize & understand the functional organization of the nervous system
- Identify & understand differences between sympathetic & parasympathetic divisions
- Describe effects of sympathetic & parasympathetic stimulation on various organs
- Describe steps in synthesis, storage, release, and & termination of major autonomic neurotransmitters
- Name major types of receptors found on autonomic effector tissues
- Understand pharmacologic manipulations of cholinergic & adrenergic systems

The Autonomic Nervous System

The Autonomic Nervous System

- Autonomic = Independent
 - Involuntary organ control
- Innervates
- Smooth muscle (blood vessels, bladder, respiratory tract)
- Cardiac muscle
- Glands

Anatomy of the ANS

- Efferent neurons
 - Two types: Preganglionic and Postganglionic
 - From the Brain to the Body
- Afferent neurons
 - Reflex regulation
- Sympathetic neurons
- Parasympathetic neurons
- Enteric neurons
 - "Brain of the Gut"

Parasympathetic vs. **Sympathetic**

- Parasympathetic
 "SLUD" salivation, lacrimation, urination, and defecation
 - "D" digestion, defecation, diuresis
- Sympathetic
 - "E" situations exercise, excitement, emergency, embarrassment

Innervation

- Most organs receive dual innervation
- Sympathetic innervation:
 - · Adrenal medulla
 - Kidney
 - Pilomotor muscles
 - Sweat Glands

Special Cases

- Sexual intercourse
- parasympathetic promotes erection while sympathetic produces ejaculation
- ▶ Eye
 - sympathetic response is dilation and relaxation of the ciliary muscle for far vision parasympathetic does opposite
- - parasympathetic system relaxes sphincter muscle & promotes contraction of muscles of the bladder wall sympathetic blocks urination
- - parasympathetic system causes relaxation of the anal sphincter and stimulates colon & rectum to contract sympathetic blocks defecation

Chemical Signaling Local Mediators Histamine Hormones Thyroid Neurotransmitters Acetylcholine Norepinephrine Epinephrine

Chemical Signaling

Neurotransmission = COMMUNICATION

- No actual physical connection exists
- Between two nerve cells
- Between a nerve and the organ it innervates

Synapse

- Space between nerve cells
- · Where communication between neurons occurs

Chemical Signaling

- Neurotransmitters
 - Membrane receptors
- Receptors
- Special sensory neurons in sense organs that receive stimuli from the external environment
- LOCK & KEY

Autonomic Neurotransmission

- Neurotransmitters
 - Over fifty identified
- ANS chemical signaling
 - Acetylcholine (ACh)
 - Norepinephrine (NE)
- Cholinergic
 - · Release ACh
- Adreneraic
 - Release NE

Key Terms

- Agonist
- Substance which binds to receptor and triggers a response
- Antagonist
- Substance that inhibits the normal physiological function of a receptor
- "Blocker"
- Direct-acting
- Drugs which effect receptors
- Indirect-acting
 - Drugs which effect neurotransmission

Cholinergic Drugs

Cholinergic Agonists Indirect Acting: Donezepil Edrophonium Neostigmine Physostigmine Tacrine Direct Acting: Acetylcholine Bethanechol Carbachol Pilocarpine

Neurotransmission at Cholinergic Neurons

- Synthesis
- Storage
- Release
- Binding
 - Muscarinic
 - Nicotinic
- Degradation
- Recycling

Cholinergic Neurotransmission

- Synthesis of ACh from acetyl CoA and choline
- Storage of ACh in synaptic vesicles
- Release of Ach
- Action of ACh by binding to and activating receptors
- 5. Inactivation by enzymatic breakdown of Ach by AChE located in the synapse

http://www.muhealth.org/~pharm204/PNS1.jpg

Cholinergic Receptors (Cholinoreceptors)

Cholinergic Receptors

- Stimulated by acetylcholine (ACh)
- Nicotinic
- Recognize nicotine
- Autonomic ganglia (both sympathetic and parasympathetic)
- Neuromuscular junctions
- Muscarinic
 - · Recognize muscarine
 - Ganglia of peripheral nervous system and autonomic effector glands
- Stimulated by the mushroom poison, muscarine

Direct-Acting Cholinergic Agonists

- Parasympathomimetics
- Bind and Activate cholinergic receptors
- Two groups
 - Choline Esters
 - · Carbachol and Bethanechol
 - Plant Alkaloids
 - · Pilocarpine

Direct-Acting Cholinergic Agonists

- Acetylcholine
- Decrease in Heart Rate and Cardiac Output
- · Decrease in Blood Pressure
- Increases salivation
- Increases intestinal secretions and motility
- Increases bronchiolar secretions
- Miosis
- Muscarinic/nicotinic receptors
- · Intraocular administration: miosis during opthalmic surgery
- · Intracoronary administration: coronary angiography

Direct-Acting Cholinergic Agonists

- Bethanechol
 - Muscarinic receptors
 - Oral/SC administration: stimulates bladder and GI
 - muscles
- Carbachol
 - · Muscarinic/nicotinic receptors
 - Intraocular administration: miosis during opthalmic surgery
 - Topical ocular administration: glaucoma

Direct-Acting Cholinergic Agonists

- Pilocarpine
 - Less potent
 - Muscarinic receptors
- Glaucoma
 - · Administered topically to the cornea
 - Lowers intraocular pressure by increasing outflow of aqueous humor
- Xerostomia
- Administered orally to stimulate salivary gland secretion

Direct-Acting Agonists: Plant Alkaloids

- Muscarine
 - Muscarinic receptors
 - No clinical use
- Nicotine
 - Nicotinic receptors
 - Smoking cessation gum, patches, nasal spray, & inhaler

Indirect-Acting Cholinergic **Agonists**

- Anticholinesterases
- Prevent break down of ACh at cholinergic synapses
- Reversible cholinesterase inhibitors
 - Shorter-acting
- Irreversible cholinesterase inhibitors
 - Longer-acting

Indirect-Acting Cholinergic Agonists

- Neostigmine
 - Counteract curariform toxicity
 - Post-op urinary retention & abdominal distention
- Physostigmine

 - Glaucoma Antidote for atropine poisoning
- Pyridostigmine
- Myasthenia gravis
- Other
- Myasthenia gravis, diplopia, blurred vision

Indirect-Acting Cholinergic Agonists Edrophonium MOA Prevents hydrolysis of Ach Myasthenia gravis Muscle weakness due to Ach Indications Differential diagnosis of improve neuromuscular

Indirect-Acting Cholinergic Agonists

- Donepezil/Galantamine/Rivastigmine/Tacrine
 - Indications
 - · Alzheimer disease
 - Central Acting
 - · Cross Blood Brain Barrier
 - · Increase ACh concentration
 - Improves cholinergic function

Indirect-Acting Cholinergic **Agonists**

- Echothiophate rreversible
 - Organophosphate
- ▶ MOĀ
- Form covalent bond with catalytic site of
- cholinesterase
- Long duration of action · Slowly hydrolyzed
- Aging
- Indications
 - Ocular conditions: chronic treatment of open-angle glaucoma

Cholinergic Antagonists

- Antimuscarinic Agents
- Atropine
- Cyclopentolate
- Ipratropium
- Scopolamine . Tropicamide
- Ganglionic Blockers
 - Nicotine
- Neuromuscular Blockers
- Pancuronium
- Rocuronium
- Succinylcholine
- Vecuronium

Muscarinic Receptor Antagonist

- Antimuscarinics
- ▶ Compete with ACh
- Inhibits effects of parasympathetic nerve stimulation
- Belladonna Alkaloids
 - Atropine, scopolamine, hyoscyamine
- Semisynthetic/Synthetic
 - Ipratropium, dicyclomine, oxybutynin, flavoxate, tolterodine, tropicamide

Atropine/Scopolamine

- Prototype
 - Atropa belladonna (deadly nightshade)
 - Belladonna "fair lady"
 - · Pupillary dilation
- Atropine
 - Relax smooth muscle
 - Increase heart rate and condution
 - Inhibit exocrine gland secretion
 - Scopolamine

Atropine

- Blocks parasympathetic stimulation
- Action is dose-dependent
 - 0.5mg Dry mouth, ↓ sweating
 - . 1mg ↑HR, very dry mouth, thirst
 - · 2mg Blurred vision, tachycardia, palpitations
 - 5mg urinary retention, hot/dry skin, restlessness,
 - · 10mg rapid/weak pulse, hallucinations, delirium, coma

Atropine Poisoning

- Mad as a hatter
- Blind as a bat
- Dry as a bone
- Red as a beet
- Hot as a pistol

Organophosphate Poisoning

Ipratropium

- · Administered via inhalation
- · Used in obstructive lung diseases
- Emphysema
- · Chronic bronchitis

Ganglionic Blockers

- Nicotine
- · Cigarettes, patches, gum, chewing tobacco, Skoal, Snuff
- Depolarizes autonomic ganglia
- · Clinical use:
- · Smoking cessation

Neuromuscular Blocking Drugs

- Inhibit neurotransmission at skeletal neuromuscular junctions
- Results in muscle weakness and paralysis
- Nondepolarizing agents
 - Curariform drugs
- Depolarizing agents
 - Succinylcholine

Neuromuscular Blocking Drugs

- MOA: competitive antagonists of Ach at Nicotinic receptors in skeletal muscle
- Sequence of paralysis
- Small & rapidly moving muscles
 Larger muscles
- Intercostal muscles & diaphragm
- Clinical Use:
- Muscle relaxation during surgery
 Facilitate intubation/endoscopic procedures

Neuromuscular Blocking Drugs

- NONDEPOLARIZING or COMPETITIVE
- Curare: "arrow poison"
- Low doses
- High doses
- IV
- Do Not Cross Blood Brain Barrier
- Selection based on duration of action

Neuromuscular Blocking Drugs

- Depolarizing
- Succinylcholine
 - MOA: Binds to N receptors causing persistent depolarization of the motor end plate
 - · Fasciculations followed by sustained paralysis
 - Hydrolyzed by plasma cholinesterases
 - · Short duration of action
 - Indications:
 - · Muscle relaxation during surgery
- No pharmacological antidote

Adrenergic Pharmacology

Adrenergic Receptors

- Stimulated by norepinephrine (NE) or epinephrine (E)
- Alpha-adrenergic receptors
- Excitatory
- Beta-adrenergic receptors
 - Excitatory or inhibitory

Adrenergic receptors

- Alpha 1
 - Smooth muscle of most arterioles
 - Sphincter muscles of the GI tract & bladder
- Smooth muscle contraction
- Alpha 2
 - Presynaptic nerves and parts of the GI tract

Adrenergic receptors

Beta 1

- Dominant type in the heart and other locations
- Cardiac stimulation

Beta 2

- Bronchioles of the lung, the wall muscles of the bladder and other locations
- Smooth muscle relaxation

Adrenergic Receptors

Alpha

- Alpha₁ mediates contraction of smooth muscle
- Alpha₂ mediates ↑ in NE release, platelet aggregation, inhibition of insulin secretion, ↓ in aqueous humor secretion, CNS effects

Beta

- Beta₁ cardiac stimulation
- Beta₂ relaxation of bronchial, smooth, and uterine muscle

Direct-Acting Adrenergic Agonists: Catecholamines

- Norepinephrine
 - · Endogenous sympathetic neurotransmitter
- Epinephrine
 - · Principal hormone of adrenal medulla
- Dopamine
 - Precursor to norepinephrine and epinephrine
- Isoproterenol and dobutamine

Catecholamines: Chemistry and Pharmacokinetics

- Catechol moiety & ethylamine side chain
- Rapidly inactivated
- Administered parenterally – Why?

Catecholamines: Cardiovascular Effects

- Norepinephrine
 - Alpha 1 adrenergic receptors
 - Vasoconstriction, ↑ PVR
 - Increased BP
- Epinephrine
 - ↑SBP and ↑ or ↓ DBP
 - Lower doses = β_2 stimulation > α_1
 - Higher doses = α > β

Catecholamines: Cardiovascular Effects

- Isoproterenol: beta 1 & 2
 - Vasodilation & cardiac stimulation
- Dobutamine
 - ↑ myocardial contractility & stroke volume
 - Produces smaller increase in heart rate
- Dopamine
 - Low doses vs. high doses

Catecholamines Effects

- Respiratory
 - Bronchodilators
- Adverse effects
 - Excessive vasoconstriction
 - Reduced blood flow to vital organs
 - · Excessive cardiac stimulation
 - · Hyperglycemia (beta agonists)

Catecholamines: Specific Drugs

- Dopamine
 - Septic and cardiogenic shock
 - Dose titrated to achieve desired BP
- Norepinephrine
- Septic shock
- Cardiogenic shock

Catecholamines: **Specific Drugs**

- Epinephrine
 - · Indications:
 - · Anaphylactic shock
 - Vasoconstrictor
 - · Cardiac stimulant
- Dobutamine
 - Cardiac stimulant

Direct-Acting Adrenergic Agonists: Noncatecholamines

- No catechol moiety
- Phenylephrine
- Midodrine
- Albuterol and related drugs
- Imidazolines

Phenylephrine

- Selective α₁ adrenergic receptor agonist
- > Produces vasoconstriction via smooth muscle contraction
- Indications:
 - Nasal decongestant
 - Ocular decongestant
 - Facilitates ophthalmic examination
 - Hypotension/shock
 - BP maintenance during surgery

Noncatecholamines: Albuterol, Terbutaline

- Selective β₂ adrenergic receptor agonist
- ▶ Smooth muscle relaxation
- Indications
 - Albuterol: Asthma/COPD
 - Bronchodilation
 - Terbutaline: premature labor
 - Relaxes uterus
- Adverse Effects:
 - Tachycardia, muscle tremor, nervousness

Noncatecholamines: **Imidazolines**

- Activate α-adrenergic & imidazoline receptors
- Oxymetazoline

 - Vasoconstriction via α₁ receptors Topical nasal and ocular decongestants
- Clonidine
 - Activate a2 & imidazoline receptors in CNS
 - Chronic hypertension
- Adverse Effects
 - Sedative
 - Cardiovascular depression

Indirect-Acting Agonists

- Amphetamine
 - High lipid solubility
 - ↑ synaptic concentrations of norepinephrine
 - Effects: vasoconstriction, cardiac stimulation, CNS stimulation, ↑BP
- Cocaine
 - Stimulates sympathetic nervous system
 - Effects: vasoconstriction, cardiac stimulation, ↑BP
 - Indications: local anesthesia

Mixed-Acting Adrenergic Receptor Agonists

- ▶ Ephedrine/Pseudoephedrine
 - Activate α and β receptors
 - Nasal decongestants: α₁ receptors
 - Side Effects:
 - · Tachycardia
 - ↑BP
 - · Urinary retention
 - · CNS stimulation/Insomnia

Adrenergic Receptor Antagonists

- Sympatholytics
 - Drugs which reduce sympathetic stimulation
- Therapeutic effects
- Blockade of α₁ or β₁ receptors
- Adverse effects
 - Blockade of α₂ or β₂ receptors

Nonselective α-Blockers

- Phenoxybenzamine
 - · Forms covalent bond with α receptor
 - Chemical sympathectomy
 - ↓PVR, ↑ blood flow
 - · Relaxes smooth muscle in bladder neck & prostate
 - Hypertensive episodes:
 - · Pheochromocytoma

- Competitive receptor antagonists
 - Vasodilation, ↓PVR, ↓BP
- Dermal necrosis & ischemia
 - i.e. accidental injection of epinephrine into finger
- Adverse Effects
 - Dizziness, headache, nasal congestion

Selective α₁-Antagonists

- MOA:
 - Relax vascular & smooth muscles including urinary and prostate
- Indications
 - Hypertension
 - Urinary retention
- Adverse Effects
 - 1st dose syncope

- Prazosin, doxazosin & terazosin
- Alfuzosin and Tamsulosin
- Uroselective α₁ blockers
- Indication: urinary retention in males with BPH

B-Adrenergic Receptor Antagonists

- Blockade of β₁-receptors
 - Heart: negative chronotropic, inotropic, and dromotropic effect
 - · Kidneys: reduces secretion of renin
 - Eye: ↓ aqueous humor secretion and intraocular pressure

B-Adrenergic Receptor Antagonists

- Blockade of β₂-receptors
 - · Lungs: bronchoconstriction
 - Liver: slows recovery of blood glucose after hypoglycemic event
 - Masks signs/symptoms of hypoglycemia

Nonselective Beta Blockers

- Propanolol
- High lipid solubility
- Hypertension
- Essential tremor, migraine headaches, acute thyrotoxicosis, acute myocardial infarction, pheochromocytoma
- ▶ Timolol
- Glaucoma

- Cardioselective
 - \circ $\beta_1 > \beta_2$
- Selectivity is not absolute
- Use with caution in asthmatics
- Metoprolol

α- and β–Adrenergic Receptor Antagonists

- Carvedilol
 - MOA: vasodilation, ↓HR & BP, ↑ cardiac output
 - Clinical use: hypertension & heart failure
- Labetalol
 - MOA: vasodilation, ↓HR & BP
 - · Clinical use: hypertension

