## **EMC 451**

# Advanced ECG Interpretation

Unit 7: Differentiating Ventricular Tachycardia and SV:

EMC 451: V-Tach vs. Aberrant SVT

1

## Unit Objectives

- Upon completion of this unit, you should be able to:
  - Define aberrancy.
  - Discuss the importance of differentiating among broad complex tachycardias.
  - List and apply the Brugada criteria.
  - List and apply other criteria for differentiating ventricular tachycardia and PSVT with aberrancy.
  - Describe the circumstances under which an unequivocal differentiation cannot be made.
  - Describe a practical approach for clinically differentiating ventricular tachycardia and aberrancy.

EMC 451: V-Tach vs. Aberrant SV

2

### Aberrancy

- Aberrancy refers to an abnormal conduction pattern of impulses through the ventricles.
- The delay prevents the areas of the myocardium normally supplied by the RBB from depolarizing.
- These areas are depolarized by current flowing from the depolarized left ventricle.
- The result is a wide QRS complex that resembles a PVC or ventricular tachycardia, yet is actually a supraventricular rhythm.

EMC 451: V-Tach vs. Aberrant SVT

# Importance of Differentiating Among Wide QRS Tachycardias

- VT may result in immediate hemodynamic collapse and/or deteriorate into V-fib.
- Treating V-tach with Verapamil may accelerate the tachycardia and precipitate V-fib.

EMC 451: V-Tach vs. Aberrant SVT

# Conditions in which Unequivocal Diagnosis cannot be Made

- RBBB or LBBB pattern favors SVT with aberrancy, but VT can exhibit the same morphology.
- Constant P and QRS relationship because retrograde atrial conduction occurs in 50% of patients with VT.
- QRS ≤ 0.14 seconds, as some fascicular tachycardias may have a relatively narrow QRS complex
- Some types of WPW syndrome

EMC 451: V-Tach vs. Aberrant SVT

# Absence of an RS complex is all RS complex in al

# Brugada Criteria continued

- Original Sensitivity 98.7%
- Original Specificity 96.5%
- Revised Sensitivity 83%
- Revised Specificity 70%
- Assumes diagnosis of VT and diagnosis of SVT made by exclusion criteria for VT
- 80% incidence of VT in literature

EMC 451: V-Tach vs. Aberrant SVT

# **Other Criteria**

# History

 In one study, structural heart disease suggested VT in 95% of cases and a history of MI was associated with VT in 98% of cases.

EMC 451: V-Tach vs. Aberrant SVT

Other Criteria continued

A V Dissociation

Appears in 75% of VT cases

Physical Signs

Varying intensity of the first heart sound

Beat-to-beat changes in systolic BP

Irregular cannon A waves in jugular pulse

When course of the right aroun during distrine

BMC 451: WTach vs. Aberrant SVT



# Other Criteria continued

- ECG Signs continued
  - QRS duration  $\geq$  0.14 seconds suggests VT.
  - Extreme right axis deviation never occurs in SVT
  - Concordant patterns (either all positive or all negative complexes in the precordial leads)
  - QRS morphology

EMC 451: V-Tach vs. Aberrant SVT

# RECG Signs Favoring Aberrancy QRS Pattern in V1 qRS qRS rR' QRS Pattern in V6 qRS proving Aberrancy qRS qRS qRS qRS rR' qRS qRS

| ECG Criteria Favoring VT            |                   |          |                   |  |
|-------------------------------------|-------------------|----------|-------------------|--|
| QRS Pat                             | QRS Pattern in V1 |          | QRS Pattern in V6 |  |
| R                                   | $\Lambda$         | rS       | 7                 |  |
| qR                                  | -,\L              | s        | ĺΫΙ               |  |
| RS                                  | -1                | qR or QR | <b>↓</b> ↓        |  |
| Slurred<br>downslope R              | 1                 | R        | _/_               |  |
| EMC 451: V-Tach vs. Aberrant SVT 13 |                   |          |                   |  |









