The Pediatric Airway in Health and Disease II

EMC 420: Maternal & Child Emergency Care
D. Trigg, MD

Objectives

- Discuss management of assessment and management of specific respiratory emergencies in infants and children.
- Distinguish respiratory distress from respiratory failure.
- Identify patients requiring rapid sequence intubation to support oxygenation and ventilation.

Case Study 1: "Breathing Fast"

- A mother brings in her 3-month-old girl who is breathing too fast.
- She is irritable and feeding poorly.
- She is alert; has tachypnea, nasal flaring, intercostal retractions; color is pale.

Initial Assessment (1 of 2)

PAT:

 Abnormal appearance, abnormal breathing, normal/abnormal circulation

Vital signs:

 HR 190, RR 60, T 38°C, O₂ sat 90% on room air, Wt 4 kg

Initial Assessment

- A: Open; no stridor
- **B:** Tachypneic with retractions and reduced tidal volume.
- **C:** Color is normal, skin is warm and dry, pulse is rapid but strong and regular.
- **D:** Alert with no focal neurologic signs.
- **E:** No obvious signs of injury

Question

What is your general impression of this patient?

General Impression

- · Respiratory distress:
 - Lower airway obstruction
 - Possible bronchiolitis

What are your initial management priorities?

Management Priorities

- O2; monitor
- Administer nebulized ß-agonist.
- Obtain IV access
- · Gather airway equipment that may be necessary to support ventilation in this child:
 - BVM device; appropriate size mask
 - ET tubes; appropriate size and 1/2 size smaller
 - Needle cricothyrotomy equipment

Modified from APLS

Your First Clue: Bronchiolitis

- Tachypnea
- Retractions
- Cough
- Hypoxia
- Nasal congestion
- · Apparent life-
- Fever
- Tachycardia
- · Otitis media
- threatening event
- Apnea

Discussion: Bronchiolitis

- Respiratory syncytial virus (RSV) is the most common cause.
- Most children have been infected by RSV before their second birthday.
- There is no vaccine available.

Bronchiolitis

- · Average incubation is 5 days.
- Symptoms can last a month or more.
- Hypoxia is most often due to ventilation/perfusion (V/Q) mismatch.
- · Progression to respiratory failure and shunting may be seen with pneumonia and atelectasis.

Severe Bronchiolitis

- · Infants at increased risk for severe RSV disease:
 - Premature infants
 - Complex congenital heart disease
 - Chronic lung disease
 - Immunosuppression
 - Neuromuscular disease
 - Metabolic disorders

Diagnosis of Bronchiolitis

- Single best predictor of severe disease in a healthy infant is O_2 sat <95%
- Other factors associated with severe disease include:
 - Age < 3 mo, prematurity, toxic appearance, atelectasis, and tachypnea (RR >70 bpm)
- Diagnosis of bronchiolitis is generally made clinically
 - Age of the child
 - Time of year, and
 - Presence of other cases in the area
 - NP Swab : rapid RSV-antigen detection

Modified from APLS

Diagnostic Approach

- Oxygen saturation
- · Rapid RSV antigen testing
 - May not add much to management
 - RSV -swab confirmed disease in febrile child, does not rule out a comorbid problem
 - Such as pneumonia

Modified from APLS

Controversies in Management

- · Nebulized bronchodilators
 - The old adage that B2's are of NO benefit in bronchiolitis: not completely accurate
 - Albuterol: <u>small</u> transient improvements in acute clinical score.
 - Ipratropium bromide : no effect.
 - Epinephrine : may show <u>some</u> beneficial effect but overall benefit is not clear.
- Methylprednisolone (glucocorticoids)
 - RCTs have shown no benefit.
- Ribavirin

Modified from APLS

Case Progression/Outcome

- Our 3-mo old patient received nebulized racemic epinephrine but continued to have respiratory distress.
- severe disease should be monitored very carefully.
- Patient was admitted to PICU where she was intubated for recurrent apneic spells.
- Apnea is seen in up to 18% of patients with RSV, with the risk being higher in premature and young infants.

Case Study : "Breathing Problem"

- A 10-month old boy born at 28 weeks' gestation presents to the paramedics 4 mo after discharge from NICU.
- 2 days ago he developed URI followed by increased RR and increased home O₂ requirements.
- He is alert, shows nasal flaring and retractions, and his color is pale.

Modified from APLS

Initial Assessment

PAT:

 Normal appearance, abnormal breathing, normal/abnormal circulation

Initial Assessment

- A: Open no stridor
- B: Tachypnea, retractions
- **C:** Skin pale, capillary refill <2 sec, skin warm, dry; pulse strong, rapid
- D: Alert
- E: No signs of injury, no rash

Focused Assessment

Vital Signs:

- HR 160, RR 60,
- -T: 37.9°C (100.2°F),
- O2 sat 88% on 3L NC, Wt 6 kg

CHEST:

- Diffuse wheezing; no rales

Question

What is your general impression of this patient?

General Impression

- · Respiratory distress:
 - Lower airway obstruction
 - Bronchiolitis vs. bronchopulmonary dysplasia with viral infection

What are your initial management priorities?

Management Priorities

- Leave patient in position of comfort.
- · Place patient on monitor.
- · Administer nebulized albuterol with O2.
- Increase oxygen to 4L by nasal cannula after nebulized treatment.

Background: BPD

- Bronchopulmonary dysplasia (BPD) is a severe form of chronic lung disease.
- Most commonly seen in low birth weight infants.
- Diagnosis is based on the following 3 criteria:
 - Mechanical ventilation in neonatal period
 - Continued need for supplemental ${\rm O_2}$ at day 28 of life
 - Pulmonary insufficiency

Case Progression/Outcome

- Our 10-month-old infant with BPD received inhaled albuterol, ipratropium bromide and oral steroids in the ED.
- His RR is 50 and O₂ saturation improves to 95%.
- Further assessment shows right otitis media and he is discharged home with next day follow up.

Case Study: "Fever"

- A 6-month-old boy with history of two days of fever is brought to the ED by his father.
- The boy developed respiratory distress today.
- He is poorly responsive to his surroundings with marked intercostal retractions, and his color is pale to gray with circumoral cyanosis.

Initial Assessment

PAT:

Abnormal appearance, abnormal breathing, abnormal circulation

Vital signs:

– HR 60, RR 40, O₂ 84% on room air What is your impression and management priorities?

General Impression

- Respiratory failure/cardiopulmonary failure
- Immediate airway management is necessary to prevent cardiopulmonary arrest.

Management

- Place on cardiorespiratory monitor.
- Begin bag-mask ventilation.
 - O₂ sat improves to 97% and HR increases to 100 bpm
- Establish vascular access.
- Prepare for rapid sequence intubation (RSI).

Case Discussion: RSI

- S: Suction
- O: Oxygen
- A: Airway equipment
 - Miller 1 blade and ETT size 3.5 mm
- P: Pharmacology
 - Atropine
 - Ketamine or etomidate
- Succinyl choline or rocuronium
- ME: Monitoring equipment

Case Progression

- Patient is intubated and thick green sputum is suctioned from airway.
- Chest radiograph reveals RLL and left lingular pneumonia.
- Patient is placed on cefuroxime and transferred via transport team to regional pediatric center.

Background: Pneumonia

- Incidence of 4% per year in children younger than 5 years, 2% in children 5 to 9 years, and 1% in children older than 9 years.
- Viral etiology most common
 - peak incidence between ages 3 to 5 years
- Bacterial pneumonia has higher mortality (2-3 times) and morbidity.
 - Pneumococcus is the leading cause of community-acquired bacterial pneumonia.

TABLE 3-18 Risk Factors for Pneumonia

- Young age
- Male
- Pollution
- Nutritional status
- Immunodeficiency
- · Anatomic airway abnormalities
- · Metabolic disease
- Socioeconomic factors

Your First Clue: Pneumonia

- Cough
- Tachypnea
- Fever
- Malaise
- Chest pain
- Abdominal pain
- Shortness of breath
- Hypoxia

Radiology: Diffuse Patchy Infiltrates

Focal Infiltrates

Management: Pneumonia

- For the child in respiratory distress:
 - Supplemental O₂, antipyretics, and bronchodilator therapy is given in addition to IV antibiotics.
- · Hospital admission considered:
 - Infants with a lobar infiltrate
 - Respiratory compromise
 - Dehydration
 - Pleural effusion
 - Failed outpatient management

Six Mainly Preventable Causes of Childhood Death Worldwide

- Pneumonia (19 %)
- Diarrhea (formerly most common)
- Malaria
- Infection (many : measles, tetanus, HIV, newborn)
- Pre-term delivery
- Complications of childbirth ("oxygendeprivation")

WHO data [please disregard the footer; this is NOT a APLS slide]

The Bottom Line

- Infants and children are at higher risk for complications due to specific respiratory emergencies.
- Immediate support of oxygenation for all patients with respiratory distress and support of ventilation in patients with respiratory failure can be life saving.

