

Outcomes

At this lecture's completion, the learner will be able to:

- Integrate pathophysiological principles with
 - clinical presentations of shock
 - the differential diagnoses of potentially lifethreatening, reversible, common causes of shock
- Integrate pathophysiology and presentations of less common, but life-threatening causes of shock
- Appreciate the sense of urgency for initial assessment and intervention in the patient with vague presentations

Outcomes, continued

- Recognize the settings or risks for shock in emergency medicine
- Organize the initial stabilization of shock
- Recognize early signs and symptoms of shock
- Discuss drugs that may be used to treat shock
- Discuss the body's physiologic response to changes in perfusion (4-2.17)
- Describe the effects of decrease perfusion, cellular ischemia, capillary stagnation (4-2.17-2.2 0)

Outcomes, continued

- Describe the pathophysiology, clinical features, and it treatment of cardiogenic shock (5-2.112-118)
- Describe the pathophysiology of spinal shock (4-6.13)
- Integrate History, assessment findings, pathophysiological principles with a treatment plan for various forms of shock (4-2.42-2.44)
- Describe some of the epidemiologic considerations for shock, in particular, cardiogenic shock, septic shock, neurogenic shock

Consequences

- cells are deprived of O₂
- cells accumulate CO₂ and H⁺ (lactic acidosis)
- leading cellular dysfunction + death
- then tissue destruction + malfunction
- finally death of the patient

Dispatch does not Report "Shock"

- Before the usual discussion of:
 - types of shock
 - disease states and how their pathophysiologies cause shock
 - treatments of each of these
- First, consider the prehospital clinical picture.
 - How do shock patients present to the paramedic?
 - What are their symptoms and signs?

The body's circulatory coping mechanism is designed to try to:

- maintain perfusion
 - preferentially to vital organs
 - heart
 - brain
- reduce perfusion (if necessary) to:
 - non-vital organs
 - skin
 - extremities

Recognizing Shock Importance of early recognition the ideal time for intervention avoid rapid deterioration increase likelihood of successful interventions Method recognizing clinical settings or risks recognizing early signs and symptoms

Signs and Symptoms of Shock

- 1. Restlessness, agitation, anxiety
- 2. Skin: Cold, clammy, pale
- 3. Pulse: Rapid, thready
- 4. Respiration: Rapid, shallow
- 5. Thirst
- 6. Orthostatic BP +/or HR changes / Pulse Pressure Δ
- 7. Confusion
- 8. Decreased urine output
- 9. SBP < 90 mmHg

Clinical Features

Not uncommon to have patient present with nonspecific symptoms

- Confusion
- Listlessness, lethargy
- Weak and dizzy

- No clinical improvement
- Failure to respond to basic shock treatment
- Rule out occult causes:
 - Allergic reactions
 - Occult bleeding
 - Tension pneumothorax
 - Metabolic shock

Shock Treatment

Standard fluid resuscitation

- 20 ml / kg IV over 10 min.
- "Under resuscitation "
 - Volume necessary to main SBP of 70 mmHg
- · Ideal resuscitative fluid
 - Blood (type O)

Vasopressors

- Only after volume resuscitation
- Dopamine 10 mcg / kg / min IV drip
- Norepinephrine 10 mcg / min IV bolus; then, 1 mcg / min IV drip

- Mortality 20-80%
- Immunocompromised patients
 - DM
 - Chemotherapy
 - Indwelling catheters
- Clinical features
 - ALOC
 - $T^0 > 38^0 \text{ or } < 36^0$
 - Wide pulse pressure (unlike most other forms of shock)
 - Warm extremities
 - Hyperglycemia
 - Minimal response to fluid challenge

Treatment Septic Shock Treatment ABC's • IV NS WO (4-6 L) • Dopamine 10 mcg / kg / min IV drip • Norepinephrine 10 mcg / min IV bolus; then, 2 mcg / min IV drip Ceftriaxone 1 gram IV

Treatment

- Check DNR status (80% mortality)
- ASA 160 mg chew, if not allergic
- Mild-moderate
 - Dobutamine 10 mcg / kg / min
- Severe
 - Dopamine 10 mcg / kg / min IV drip
 - NTG 10 mcg / min IV drip

Neurogenic Shock

Spinal cord injury

- The higher the level of injury, the worse the shock
- Disruption of the sympathetic constriction
- Unopposed vagal activity
 - Bradycardia
 - Hypotension

Neurogenic shock

- Diagnosis: one of Exclusion
- R/O septic shock
- Tx: high dose methylprednisolone controversial

Clinical Settings

- Pain
 - Chest pain
 - Abdominal pain
 - Pelvic pain
- Pregnancy
 - "Any female 12 50 y/o who calls 911"
- Vague
 - Elderly / infant
 - Sepsis-prone / immunocompromised
 - No obvious allergen / exposure (Bee sting,...)
 - ALOC

Shock Clinical Settings Pain

- Chest pain
 - MI
 - Pulmonary Embolism
 - Tension Pneumothorax
 - Thoracic Aneurysm
 - Abdominal pain
 - Abdominal Aortic Aneurysm
 - Ectopic (tubal) [ruptured] pregnancy
 - Pelvic pain
 - Abdominal Aortic Aneurysm
 - Ectopic [ruptured] pregnancy
- "Any female < 80 y/o"
 - Ectopic pregnancy

Vague Presentation

Immunocompromised

- Extremes of age
- Diabetes
- Post operative
- Burns
- Indwelling catheters
- Cancer / chemotherapy patients
- HIV
- IV drug abuse

Summary

We have discussed:

- Recognizing the clinical settings and risks for shock in emergency medicine
- Prompt recognition of early warning signs and symptoms of shock
- Organization of initial stabilization of shock
- Drugs used to treat the various forms of shock