

Objectives

Upon completion of this lecture the learner should be able to:

- Review the functions, physiology, and pathophysiology of magnesium .
- Review the clinical settings or risks for magnesium emergencies.
- Appreciate that Mg ⁺⁺ disorders are "clinical diagnoses"
- Appreciate the need for early consideration and rapid intervention in certain patients with suspected hypomagnesia.

• Appreciate that the rapid intervention in patients with hypomagnesemic states and with other medical emergencies is extremely safe - with one exception.

 Discuss the prehospital management (including recommended dosages) of the above conditions.

Magnesium As An Antiarrhythmic

- Acute MI
- · Refractory VT
- Refractory VF
- Torsades
- TCA OD
- Digitalis OD
- · Quinidine Toxicity
- Hypokalemic Arrhythmias
- Prolonged Q-T Syndromes
- Any ventricular arrhythmia not due to hypermagnesemia

Use of Magnesium in Acute Myocardial Infarction

- During AMI magnesium levels fall due to a number of factors including :
- an intracellular shift of Mg Hypomagnesemia
 - with or without hypokalemia (potassium levels also may fall or may be low in AMI)
 - predisposing to arrhythmias.

Dose of Magnesium in ACLS

- Unstable Patient
 - -2 grams IV push
 - (1 gm. = 2 cc of 50% solution) 1-2 grams Q 1 minute
- Stable Patient
 - 1-2 grams over 20 minutes
 - Then 1-2 grams per hour

-		

Magnesium For Specific Ventricular Arrhythmias

- · Cardiac Arrest
- Ventricular Fibrillation
- Ventricular Tachycardia (esp. Torsades de Pointes),
- "Magnesium should be used for cases of refractory (1) VT and (2) VF"

9	15		•
	М		
7			•
			•
ш			
11			
1/2			
	a.		
ш			

Magnesium for Torsades

- Torsades de Pointes or "twisting of pointes" Ventricular Tachycardia
- TdP has numerous etiologies but generally can be grouped into the causes of the prolonged Q-T syndromes:

Etiology of Prolonged Q-T
Interval / Torsades

- Electrolyte Deficiency
 - Hypokalemia
 - Hypomagnesemia
 - Hypocalcemia
- Drugs
 - Phenothiazines
 - Cyclic Antidepressants
- Quinidine
- Procainamide
- Structural
- Cardiac (ischemia, contusion, myocarditis)
- Neurologic (stroke, bleed, etc.)
- Miscellaneous
 - Hypothermia
 - Hypothyroidism

Magnesium for Torsades

Mechanism of Action

- Reverses underlying etiology
- Decreases Q-T interval
- Non Arrhythmogenic
- · Rapidly effective

Non-magnesium Therapies for Torsades:

 $\underline{\text{Non}}\text{-magnesium}$ therapies have been used in the past for Torsades:

• Lidocaine Isoproterinol Beta Blockade Cardioversion Defibrillation

· Overdrive Pacing

Magnesium vs Non-magnesium for Torsades

- Safer than isoproterinol
- · Safer than beta blockade
- Safer than cardioversion and defibrillation
- Quicker than pacing
- · Excellent in ischemia
- · Highly specific and effective

Dose of Magnesium for Torsades

- Unstable Patient
 - 2 grams IV <u>push</u> 1-2 grams Q 1 minute
- Stable Patient
 - 2 grams over 20 minutes
 - 2 grams per hour

Magnesium for Digitalis OD

Digitalis Toxicity

- A poisoned Na-K pump : leak of K out of the cell and Na into the cell
- · Hyperkalemia
- Spontaneous depolarizations (PVC, VT, VF, Torsades)
- Increased toxicity with hypomagnesemia
- · Increased toxicity with hypokalemia

Magnesium for Digitalis OD

- · Stimulates the Na-K ATPase pump
- Increased phase 4 (resting membrane) negativity and restores a normal resting membrane potential.
- Decreased spontaneous depolarizations
- Reverses hyperkalemia due to digitalis poisoning
- Counteracts calcium's effect on digitalis poisoned cells

-	
-	

Magnesium in SVTs

- AF
- PSVT
- MAT [wandering atrial pacemaker; in COPD].

	1	
	ж.	
	$^{\prime\prime}$	
100		
973		
	1 77	
- 10		
١ĩ		
м		

Mg ⁺⁺ Mechanism of Action in SVTs

- · Mg block of AV conduction
- reduction of sympathetic influences on AV node
- altered slow channel calcium movement
- Hypokalemia correlates with hypomagnesemia
 - AF and MAT are associated with hypokalemia

High Risk For Clinically Significant Hypomagnesemia Patients on diuretics Alcoholic or malnourished patients Patients with hypokalemia Patients with AMI Patients with ventricular arrhythmias

Magnesium for Non Cardiac Emergencies

- · ETOH withdrawal
- COPD
- Eclampsia
- · Seizures
- Tetanus

Mg ⁺⁺ and ETOH withdrawal

- Magnesium is not well studied in ETOH withdrawal.
- There are numerous studies old and new that show :
 - ETOH abuse increases Mg loss
 - ETOH abusers have a poor intake of Mg
 - low Mg increases likelihood of seizures and DT's.

Magnesium in Alcohol Withdrawal

- Decreases incidence of seizures
- Decreases tremulousness
- · Decreases arrhythmias during withdrawal
- · Decreases potassium losses
- · Increases efficacy Thiamine
- · Corrects total body deficit

Magnesium in Alcohol Withdrawal

- Magnesium dose in Treatment of Hypomagnesemia in ETOH withdrawal:
- Total body deficit is 10-20 grams
- Takes 5-7 days to replete Mg ++ deficit
- Give:
 - 2 grams over 20-60 minutes
 - 5 gram, Q 8 hr IV
 - Don't forget to give: Thiamine

Magnesium in Eclampsia

- Its major benefit is that it blocks vasospasm:
- Eclamptic vasospasm \sim meditated by calcium
- Magnesium is a calcium blocker
- Magnesium blocks vasospasm

Magnesium in Eclampsia

- · Lowers incidence of seizures
- · Corrects hyperreflexia
- · Controls blood pressure
- Titratable
- Non-toxic to the non-term fetus (may cause resp. depression in newborn)

Mg ++ Dosage for Eclampsia

- 4 grams MgSO4 over 5-10 minutes
- Then 1-2 grams per hour
- D/C if:
 - loss of DTR's
 - respiratory depression
 - (urine output below 25 cc/hr)
 - (Mg level above 10mg/dl)

Possible Toxicity of Magnesium in Eclampsia

- Decreased muscle tone
- Decreased respiratory function
- Tocolytic (halts labor)
- Hypotension (especially with other agents)

Magnesium in Seizures

- Magnesium <u>may</u> also be used for noneclamptic seizure patients
- HypoMg correlates with increased seizure frequency

Magnesium in Tetanus-like emergencies

- For some of the same reasons as for seizures, the Mg⁺⁺ ion's mechanism may be helpful for patients with tetanic, tonic muscle contractions.
- Mg⁺⁺ has not yet, however, been well studied as an anti-seizure or anti-tetanic agent

Magnesium in COPD +/or Asthma

Studies on Mg++ for RAD began to appear in 80's

- Rolla, et al. Anal Allergy 1988 10 patients, 2 grams/20 min; FEV1 increased by 9%
- Okayama, et al Journal of Asthma, 1991 Severe asthma (2 cases of status) patients who failed to respond to standard Tx.
- Conclusion based on a still limited number of studies, magnesium results in: bronchial muscle relaxation and can be used as an adjunct to standard Albuterol therapy

Magnesium in Bronchospasm

- · Calcium blockade
- · Smooth muscle relaxation
- Maybe
 - Blocks acetylcholine release
 - Blocks histamine release

Mg Treatment of Bronchospasm

- Not currently recommended for mild asthma
- Not to be substituted for standard therapy [Albuterol; ipratropium; methylprednisolone]
- · Shortlived effect
- Improves respiratory functions [increases FEV1 and FVC]
- · Dose:
 - Ped: 50 mg/kg IV over 20-30 min.
 - 1-2 gm. IV over 20-30 min.

Is it Possible to Get Too Much Mg ++ / Hypermagnesemia

- Renal Failure
 - Magnesium ingestion
 - Lithium ingestion / OD
 - Suspect a coexisting hyperkalemia
- Treatment
 - Treat as a Ca++ blocker OD
 - Treat any coexisting hyperkalemia
 - CaCl 10% 5ml IV
 - Bicarb 50 mEq IV
 - Lasix 80 mg IV

Summary

We have discussed:

- Types of clinical settings for Mg ⁺⁺ emergencies
 - Many of which are "clinical diagnoses," based on suspicion
- Importance of early administration of Mg ⁺⁺ in certain patients
 - Recognizing that a rapid intervention with Mg ⁺⁺ in many of these medical emergencies is extremely safe - with one exception.
- Recommended prehospital dosages of Mg ++