Fluids, characteristics, influences on physiology, and relevance for emergency care • K p. 1-8 • B p. 286-298 • C p. 35-36

Objectives

- To understand the basic principles of fluids and electrolytes so as to apply these to resuscitation and therapy in prehospital emergencies
- To understand the basic pathophysiology of common fluid and electrolyte disturbances

Objectives

To understand these basic principles, we 'll look at:

- · Body compartments
- · Functions of body water
- · Homeostasis and movement of body water
- · Regulators of Fluid Balance
 - and abnormalities of regulation
 - with an introduction to Naturetic Peptides
- · Tonicity and IV Solutions

-	

Body Compartments

- Solid 40 %
- Liquid 60 %
- Water (3)
 - · Within blood vessels
 - Within cells
 - Outside of the blood vessels / in between cells

Body Compartments

- Intracellular
- Extracellular
 - Intravascular
 - Interstitial

Body Compartments

- · Intracellular water inside cells
 - 2/3 of total body water
 - or 40% of patient weight
- Extracellular water outside the cells
 - 1/3 of total body water
 - Intravascular fluid within circulatory system
 - 5% of patient weight
 - Interstitial- fluid outside the cells and
 - outside the circulatory system
 - - 3rd space
 - 15% of patient weight

Body Compartments

- 100 kg patient:
- Intracellular water 40 kg (or 40 kg x 1 L/kg)
- Intravascular: 5 kg (or 5 kg x 1 L/kg)
- Interstitial (3rd space) :15 kg (or 15 kg x 1 L/kg)

Functions of Body Water

- Cellular "ABCs"
- A transport of O2 to the cells
- B transport of CO2 from the cells
- C intravascular volume
- D transport of fuel (glucose) to cells (brain)
- E regulation of body temperature
- Transport and homeostasis of waste products, nutrients, enzymes, neurotransmitters, electrolytes
- Lubrication of muscles, joints, mucus membranes (A/B), food

Body Water Intake and Output

- · Homeostasis
- Intake = Losses (output)

Body Water Intake and Output

Intake (total : ~2500mL)
 Liquid 1000+ mL
 Food 1000 mL
 Insensible 500- mL

- Normal metabolism

Oxidation

• e.g., H + + HCO3- --- CO2 + H2O

Body Water Intake and Output

• **Losses** (~ total : 2500 mL) • Excretion 1500 - mL

• Insensible

- Lungs 500 - mL- Skin 500 - mL

• Solvent : Water

• Solute: substances mixed into solvent

- large molecules (e.g., hemoglobin)

- small molecules (e.g., NaCl, H2O)

• Movement - in living organisms

- can water go anywhere?

- can solutes move anywhere?

Fluid and Solute Movement

- · Solvent: water
 - can move anywhere
 - "wants to move" to an area of
 - · less water
 - · less pressure
- · Solutes: molecules and ions
 - cannot move anywhere
 - "wants to move" to an area of
 - · less solute
 - · less ionic charge

Solute Movement

- Selectively permeable membrane
- allows only certain items across:
 - water
 - some selected solutes:
 - ions (Na+)
 - small molecules (e.g., glucose)
- Solutes not allowed across:
 - Colloids

Fluid and Solute Movement and Gradients

- Gradient
- a difference in :
 - number of solute particles (concentration gradient)
 - water pressure (hydrostatic pressure gradient)
 - ionic charges present (electrical gradient)
 - colloids present (osmotic pressure)

Gradient Units

- Water pressure (hydrostatic pressure)
 - mmHg
- Colloids present (osmotic or "tonic" pressure)
 - mmHg, or
 - mOsm Osmolality
 - (# of solutes / kg of H2O)
- Ionic charges present (electrical gradient)
 - mEq/L milliequivalents / L or kg of H2O
 - (# of positive or negative charges/L)

Fluid and Solute Gradients

- Gradient Movements
- From greater to lesser:
 - from high concentration to low (diffusion)
 - from high hydrostatic pressure to low
 - from high ionic charge to "low" [or opposite]
- From lesser to greater:
 - colloidal (osmotic) pulling in of water
 - cellular pulling in of some selected solutes:
 - ions (Na+) even against an electrical gradient
 - requires extra energy (active transport)

Capillary Gradients

- Gradients and movements across the capillary membrane:
 - high arteriolar hydrostatic pressure
 - pushes water out into the third space
 - high venular osmotic pressure
 - pulls water from the third space
 - · back into the vascular space

-	

Osmotic Pressure

- Movement across the capillary membrane, a balance of:
 - arteriolar hydrostatic pressure
 - with
 - venular osmotic pressure
- Net effect:
 - osmotic pressure is
 - equivalent to the blood pressure

Osmotic Pressure

- Osmotic pressure :
 - # of solute particles / kg of H2O
 - (expressed as mOsm Osmolality)
- Determinants of osmotic pressure :
 - Na⁺ (largest contributor to osm. [+ tonicity])
 - glucose
 - urea (BUN nitrogen)

Osmotic Pressure and Tonicity

- Osmotic pressure (osm) and tonicity:
 - often [clinically] used interchangeably
 - (expressed as mOsm Osmolality)
- · Osmotic pressure determinants :
 - both Na+ and
 - urea (BUN nitrogen)
- Tonicity determinants:
 - only Na+
 - effect on cell volume by the surrounding fluid

-			

Osmotic Pressure and Tonicity

- Osmotic pressure (osm) and tonicity:
 - clinically, in emergency medicine, we are primarily concerned with
 - · tonicity:
 - determined primarily by Na+
 - effects of Na⁺ on tonicity (+ osm.)
 - increased Na+ increased tonicity
 - decreased Na+ decreased tonicity

Tonicity and IV Solutions

- Solutiontonicity (mOsm/kg)
- blood 290 (240-340)
- NS 308
- RL 272
- D5W 252 (metabolized quickly to hypotonic)
- D50W 25203%NS 1026

Disorders of Fluid Imbalance

- Volume contraction
 - fluid loss; hypovolemia (ECF VD)
 - "third-spacing" fluid loss (ECF VS)
- Volume overload (ECF VE)
 - vascular and third-space overload
- Water "poisoning" or overload (ICF VE)
 - Intracellular volume overload (see p. 35)

Regulators of Fluid Balance and Osmolality

- Kidneys (+ insensible organs)
- ECV stretch-sensors in:
 - renal vessels (renin,...)
 - carotid vessels (SNS/epi)
 - aorta (SNS/epi)
 - hypothalamus (ADH) (thirst)
 - atria + ventricles (ANF;BNP;...)
- · Naturetic Peptides
 - ANP; **BNP**; C-type; others

Regulators of Fluid Balance

- Kidneys primary regulator
 - Increased fluid intake -
 - incr. CO incr. Na+ and water excretion
 - ECV stretch-sensors in renal vessels
 - renin angiotension I + II BP

+ Regulators of Fluid Balance

- ECV stretch-sensors :
 - vessels
 - carotid
 - aorta
 - Sympathetic Nervous System (SNS)
 - · increased epinephrine
 - incr. PVR
 - incr. SV
 - incr. HR
 - BP = CO (HR X SV) X PVR

Other Volume Regulators

- Hypothalamus vessel ECV stretchsensors
 - decrreased volume incr. ADH -
 - » decr. excretion (of $Na^{\scriptscriptstyle +}$ and H2O)
 - » incr. PVR (vasopressin-effect)
- · Atrial and Ventricular ECV stretchsensors
 - ANP
 - -BNP
 - CNP; others

Other Volume Regulators

- · Atrium ECV stretch-sensors
 - incr. Volume [stretch] ---> incr. ANF -
 - incr. excretion (of Na+ and H2O)
 - · supresses renin angiotension-aldosterone
 - · vasodilatation
 - · thus, lowering the BP
- · Ventricular ECV stretch-sensors
 - incr. Pressure [stretch] ---> incr. BNF -
 - · increases natriuresis (Na+)
 - · increases diuresis (H2O)
 - · decreases renin
 - · vasodilatation

Physiologic Effects of ANP, BNP, and Other **Volume (and Pressure)** Regulators

- Volume (ECV) contraction
- - · decresed PVR
- Decrease in intracardiac filling pressures
- Decrease in cardiac work / O2 conumption
- · Improved myocardial performance

Causes of Increased BNP

- CHF [BNP blood test aids in the Dx of CHF]
- Aging
- Anything that increases ventricular stretch and volume overload
 - MI
 - Renal failure
 - Liver disease
 - COPD [increased lung resistance / R. afterload]

Causes of Increased ADH (vasopressin)

- Hypotension / hypovolemia
- Increased tonicity (osmolality)
- Ventilator (PPV)
- Medications (morphine, haldol,...)
- Stress
 - Surgery, anesthesia,...
 - Pain
- SIADH

Causes of Inappropriately Increased ADH

- SIADH ["inappropriate" : water retention with salt wasting]
- malignancies
 - brain
- pancreas
- lung
- prostate
- CNS
 - head trauma
 - Infection
 - CVA
 - DTs
- Drugschemotherapy
 - narcotics, phenothiazines

Summary • We have discussed some basic principles: • Body compartments • Functions of body water • Homeostasis and movement of body water • Tonicity of body water and of IV Solutions • Regulators of Fluid Balance and abnormalities of body water regulators, including BNP • These principles will help us to understand the management of fluids resuscitation and therapy of fluid and electrolyte emergencies

_			
_			
-			
-			
-			
-			