1	
٠	
2	Ventricular Rhythms Objectives
_	
3	Overview • Ventricles are the heart's least efficient pacemaker
	Normally generate impulses at a rate of 20 to 40 beats/min
	May assume responsibility for pacing the heart if: The SA node fails to discharge
	 An impulse from the SA node is generated but blocked as it exits the SA node
	- The rate of discharge of SA node is slower than that of ventricles
	 An irritable site in either ventricle produces an early beat or rapid rhythm
4	Ventricular Depolarization
	Ventricular beats and rhythms may originate from any part of the ventricles
	Typically characterized by QRS complexes that are abnormally shaped and prolonged (longer than 0.12 second)
5	Ventricular Repolarization
	Because ventricular depolarization is abnormal, ventricular repolarization is also abnormal
	Results in changes in ST segments and T waves T waves are usually in a direction opposite that of the QRS complex
,	Premature Ventricular Complexes (PVCs)
6	Arise from an irritable focus within either ventricle
	• A PVC:
	 Is premature, occurring earlier than the next expected sinus beat
	 QRS is typically equal to or greater than 0.12 second
	PVC depolarizes ventricles prematurely and in an abnormal manner
	- T wave is usually in the opposite direction of the QRS complex
7	PVCs – Compensatory Pause
	A full compensatory pause often follows a PVC
	To determine whether a pause following a PVC is compensatory or noncompensatory:
	 Measure the distance between 3 normal beats
	 Compare that distance between 3 beats, one of which includes the PVC
8	Compensatory/Noncompensatory Pause
	The pause is <u>noncompensatory</u> (incomplete) if the normal beat following the PVC occurs before it was expected
	 When the distance is <u>not</u> the same
9	Compensatory/Noncompensatory Pause
	The pause is <u>compensatory</u> (or complete) if the normal beat following the PVC occurs when expected
	When the distance is the same

10 PVCs – Patterns

Pairs (couplets): two sequential PVCs

• Runs or bursts: three or more sequential PVCs are called "ventricular tachycardia" (VT)

- Bigeminal PVCs (ventricular bigeminy): every other beat is a PVC
- Trigeminal PVCs (ventricular trigeminy): every third beat is a PVC
- Quadrigeminal PVCs (ventricular quadrigeminy): every fourth beat is a PVC

Uniform PVCs

• Premature ventricular beats that look the same in the same lead and originate from the same anatomical site (focus)

Multifocal PVCs

- · PVCs that appear different from one another in the same lead
- Often (but not always) arise from different anatomical sites

Terminology 13

- The terms "unifocal" and "multifocal" are sometimes used to describe PVCs that are similar or different in appearance

Interpolated PVCs

- · Do not have a full compensatory pause
- "Squeezed" between two regular complexes without disturbing the underlying rhythm

R-on-T PVCs

- Occur when the R wave of a PVC falls on the T wave of the preceding beat
- . A PVC occurring during this period of the cardiac cycle may precipitate VT or VF

16 Paired PVCs

- A pair of PVCs occurring in immediate succession is called a "couplet" or "paired PVCs"
 - 3 or more PVCs occurring in immediate succession at a rate of more than 100/min are called a "salvo," "run," or "burst" of VT

PVCs - ECG Characteristics

PVCs - Causes

- PVCs can occur in healthy persons with apparently normal hearts and with no apparent cause
- Incidence of PVCs increases with age

PVCs - Causes

- Normal variant
- Нурохіа
- Stress, anxiety
- Exercise
- Digitalis toxicity
- Acid-base imbalance Myocardial ischemia
- Electrolyte imbalance
 - Hypokalemia
 - Hypocalcemia
 - Hypercalcemia
- Hypomagnesemia Congestive heart failure
- · Increased sympathetic tone
- Acute myocardial infarction
- Stimulants
- Alcohol
- Caffeine
- Tobacco
- Medications
 - Sympathomimetics
 - Cyclic antidepressants
 - Phenothiazines

20 🔲	PVCs – Clinical Significance
	 PVCs may or may not produce palpable pulses Patients may be asymptomatic or complain of: Palpitations "Racing heart" Skipped beats Chest or neck discomfort
	If the PVCs are frequent, signs of decreased cardiac output may be present
21 🔲	PVCs – Intervention
	Treatment of PVCs is dependent on the: Cause Patient's signs and symptoms Clinical situation
	Most patients experiencing PVCs do not require treatment with antidysrhythmic medications
22 🔲	Ventricular Escape Beat

- A ventricular ectopic beat that occurs after a pause in which the supraventricular pacemakers failed to initiate an impulse
 - QRS measures 0.12 second or greater
 - Occur <u>late</u> in the cardiac cycle, appearing after the next expected sinus beat
 - A "protective" mechanism
 - Protects the heart from more extreme slowing or even asystole
- 23 Ventricular Escape Beat
- 24 Idioventricular Rhythm (IVR)
 - A ventricular escape or "idioventricular" rhythm (IVR) is three or more sequential ventricular escape beats occurring at a rate of 20 to
- 25 Idioventricular Rhythm Causes
 - May occur when:
 - The SA node and the AV junction fail to initiate an electrical impulse
 - The rate of discharge of the SA node or AV junction becomes less than the inherent ventricular rate
 - Impulses generated by a supraventricular site are blocked
 - May also occur because of:
 - Myocardial infarction
 - Digitalis toxicity
 - Metabolic imbalances
- 26 Idioventricular Rhythm Clinical Significance
 - Possible signs and symptoms due to the slow ventricular rate:
 - Severe hypotension
 - Weakness
 - Disorientation
 - Lightheadedness
 - Loss of consciousness
- 27 Idioventricular Rhythm Intervention
 - Avoid lidocaine!
 - May abolish ventricular activity, possibly causing asystole
 - If the patient is symptomatic because of the slow rate and/or loss of atrial kick:
 - Atropine may be ordered
 - Transcutaneous pacing (TCP) may be attempted
- 28 Idioventricular Rhythm Intervention
 - Pulseless electrical activity (PEA)

- CPR - Oxygen administration - Endotracheal intubation - IV access - Aggressive search for underlying cause of PEA Ventricular Escape Beats – ECG Characteristics 29 30 Ventricular Escape Beats IVR - ECG Characteristics 31 Idioventricular Rhythm 32 33 Accelerated Idioventricular Rhythm (AIVR) • AIVR exists when three or more sequential ventricular escape beats occur at a rate of 41 to 100 beats/min - Some cardiologists consider the ventricular rate range of AIVR to be 41 to 120 beats/min Also called "nonparoxysmal VT" or "idioventricular tachycardia" AIVR - ECG Characteristics Accelerated Idioventricular Rhythm 35 AIVR - Causes & Clinical Significance 36 · Usually considered a benign escape rhythm - Appears when the sinus rate slows and disappears when the sinus rate speeds up · Often seen during first 12 hours of MI · Common after successful reperfusion therapy AIVR - Intervention • Treatment unnecessary if patient is asymptomatic If the patient is symptomatic because of the loss of atrial kick: - Atropine may be ordered Transcutaneous pacing may be attempted · Avoid lidocaine - AIVR is protective and often transient, spontaneously resolving on its own Ventricular Tachycardia (VT) 38 . VT exists when three or more PVCs occur in immediate succession at a rate higher than 100 beats/min Non-sustained VT A short run lasting less than 30 seconds Sustained VT • Persists for more than 30 seconds · VT may occur with or without pulses Patient may be stable or unstable Ventricular Tachycardia (VT) · VT may originate from an ectopic focus in either ventricle The QRS complex is wide and bizarre P waves, if visible, bear no relationship to QRS complex - The ventricular rhythm is usually regular but may be slightly irregular Ventricular Tachycardia (VT) Monomorphic VT QRS complexes are of the same shape and amplitude

- No palpable pulse despite organized electrical activity observed on a cardiac monitor (other than VT)

· Interventions

• Polymorphic VT

_	QRS	complexes	vary i	n shape	and	amplitude
---	-----	-----------	--------	---------	-----	-----------

41 Ventricular Tachycardia – Causes

- Sustained monomorphic VT is often associated with underlying heart disease, particularly myocardial ischemia
 - Rarely occurs in patients without underlying structural heart disease

42 Ventricular Tachycardia – Other Causes

- Cardiomyopathy
- Cyclic antidepressant overdose
- Digitalis toxicity
- Valvular heart disease
- Mitral valve prolapse
- Trauma
 - Myocardial contusion
 - Invasive cardiac procedures
- Acid-base imbalance
 - Electrolyte imbalance
 - Hypokalemia
 - Hyperkalemia
 - Hypomagnesemia
 - · Increased production of catecholamines
 - Fright
 - Cocaine abuse

43 Ventricular Tachycardia – Clinical Significance

- Signs and symptoms vary
- Syncope may occur because of an abrupt onset of VT
 - The patient's only warning symptom may be a brief period of lightheadedness

44 Ventricular Tachycardia – Clinical Significance

- Signs and symptoms of hemodynamic compromise related to the tachycardia may include:
 - Shock
 - Chest pain
 - Hypotension
 - Shortness of breathPulmonary congestion
 - Congestive heart failure
 - Congestive heart failure
 Acute myocardial infarction
 - Decreased level of consciousness

45 Ventricular Tachycardia – Intervention

- Treatment is based on the patient's presentation
- Stable but symptomatic patients are treated with:
 - Oxygen therapy
 - IV access
 - Administration of ventricular antidysrhythmics to suppress the rhythm

Ventricular Tachycardia – Intervention

- Unstable patient with a pulse
 - Usually a sustained heart rate of 150 beats/min or more
- If signs and symptoms are a result of rapid rate:
 - Administer oxygen
 - IV access
 - Sedate (if awake and time permits)
 - Electrical therapy
- · If the patient is pulseless:
 - Begin CPR until a defibrillator is available

47 Ventricular Tachycardia – Intervention

 When unclear whether a regular, wide-QRS tachycardia is VT or SVT with an intraventricular conduction delay, treat the rhythm as VT until proven otherwise.

48 Monomorphic VT – ECG Characteristics

- 49 Monomorphic VT
- 50 Polymorphic Ventricular Tachycardia
 - "Polymorphic VT" refers to a rapid ventricular dysrhythmia with beat-to-beat changes in the shape and amplitude of the QRS
 complexes
 - · Two classifications of polymorphic VT
 - Long QT syndrome (LQTS)
 - · Acquired (iatrogenic)
 - · Congenital (idiopathic)
 - Normal QT
- 51 Polymorphic Ventricular Tachycardia
 - Polymorphic VT that occurs in the presence of a normal QT interval is simply referred to as "polymorphic VT"
 - Polymorphic VT that occurs in the presence of a long QT interval is called "torsade de pointes"
- 52 Torsade de Pointes (TdP)
 - · A dysrhythmia intermediary between VT and VF
 - A type of polymorphic VT associated with a prolonged QT interval
 - French for "twisting of the points"
 - QRS changes shape, amplitude, and width
 - Appears to "twist" around the isoelectric line, resembling a spindle
- 53 Torsade de Pointes (TdP)
 - Ventricular rate typically between 200 and 250 beats/min
 - May range from 150 to 300 beats/min
 - Characterized by two or more cycles of QRS complexes with alternating polarity
 - QRS complexes twist from upright to negative or negative to upright and back
- 54 Torsade de Pointes ECG Characteristics
- 55 Torsade de Pointes
- 56 Torsade de Pointes Causes
 - May be precipitated by slow heart rates
 - Associated with medications or electrolyte disturbances that prolong the QT interval
 - A prolonged QT interval may be congenital or acquired
 - Lengthening of the QT interval may be the only warning sign suggesting impending TdP
- 57 Torsade de Pointes Clinical Significance
 - Symptoms are usually related to the decreased cardiac output that occurs because of the fast ventricular rate
 - Patients may complain of palpitations and lightheadedness or may experience a syncopal episode or seizures
- 58 Torsade de Pointes Clinical Significance
 - May be initiated by a PVC
 - May occasionally terminate spontaneously and recur after several seconds or minutes
 - May deteriorate to VF
- 59 Torsade de Pointes Intervention
 - Obtain a 12-lead ECG
 - Rhythm may appear to be monomorphic VT in one lead but present the pattern typical of TdP in another
 - Treatment includes:

- Discontinuation of type IA antidysrhythmics (if drug-induced)
- Overdrive pacing or administration of one of the following:
 - Magnesium, isoproterenol, lidocaine, phenytoin
- Defibrillation may be necessary for termination of sustained episodes of TdP

60 Ventricular Fibrillation (VF)

- VF is a chaotic rhythm that originates in the ventricles
- No organized depolarization of the ventricles
 - Ventricular myocardium quivers
 - No effective myocardial contraction and no pulse
 - Resulting rhythm is irregularly irregular with chaotic deflections that vary in shape and amplitude
 - No normal-looking waveforms are visible

61 Ventricular Fibrillation

- Fine VF
 - Low amplitude waves (less than 3 mm)
- · Coarse VF
 - Waves more easily visible (greater than 3 mm)

62 Ventricular Fibrillation

- Because artifact can mimic VF, always check the patient's pulse before beginning treatment for VF
- . The patient in VF is unresponsive, apneic, and pulseless

63 VF – ECG Characteristics

VF – Causes

- Extrinsic factors
 - Increased sympathetic nervous system activity
 - Vagal stimulation
 - Metabolic abnormalities
 - Hypokalemia
 - Hypomagnesemia
 - Antidysrhythmics and other medications
 - Psychotropics
 - Digitalis
 - Sympathomimetics
 - Environmental factors
- Electrocution
 - Intrinsic factors
 - Hypertrophy
 - Ischemia
 - Mvocardial failure
 - Enhanced AV conduction
 - Bypass tracts
 - "Fast" AV node
 - Abnormal repolarization
 - Bradycardia

65 VF – Intervention

- Begin CPR until a defibrillator is available
- On arrival of the defibrillator, deliver unsynchronized shocks
- Perform endotracheal intubation, establish IV access
- Administer medications per current resuscitation guidelines

66 Asystole (Cardiac Standstill)

- Asystole is a total absence of ventricular electrical activity
 - There is no ventricular rate or rhythm, no pulse, and no

cardiac output

Some atrial electrical activity may be evident

- "P-wave" asystole

Asystole - ECG Characteristics

Asystole - Causes

- Pulmonary embolism
- Acidosis
- Tension pneumothorax
- Cardiac tamponade
- <u>H</u>ypovolemia
- <u>H</u>ypoxia
- Heat/cold (hypothermia/hyperthermia)
 Hypokalemia/hyperkalemia (and other electrolytes)
- Myocardial infarction
- <u>D</u>rug overdose/accidents (cyclic antidepressants, calcium channel blockers, beta-blockers, digoxin)

69 Asystole - Intervention

- Confirm the absence of a pulse
- Perform immediate CPR
- Confirm the rhythm in two leads
- Perform endotracheal intubation, IV access
- Consider possible causes of the rhythm
- Consider early transcutaneous pacing
- Medication therapy per current resuscitation guidelines