EE 411 Matlab Project-Modulation and Demodulation

Turn in:

- (a) A listing of your Matlab codes,
- (b) Printouts of the specified plots, and
- (c) A write up of discussions.
- (I) Write a Matlab code, which creates a DSB modulated signal:

$$x(t) = m(t)\cos 2\pi f_c t ,$$

The message signal is given by

$$m(t) = e^{-t/a} \sin 2\pi f_1 t ,$$

where a = 0.002s, $f_1 = 500Hz$, and the carrier frequency is $f_c = 20000Hz$ (within the VLF Band, ITU Standard).

- (1) Plot the message signal m(t) for $0 \le t \le 0.008$ s at sampling rate 100000 Hz.
- (2) Plot the modulated signal x(t) for $0 \le t \le 0.008$ s at sampling rate 100000 Hz.

- (II) Design a 20^{th} order Butterworth analog low-pass filter with cutoff frequency 5000 Hz. Plot the magnitude responses of the filter for $0 \le f \le 8000$ Hz.
- (III) Write a Matlab code, which demodulates the signal by multiplying x(t) with $2\cos 2\pi f_c t$ and low-pass filtering the result e(t) by the LPF designed in (II). Plot the detected signal y(t) for $0 \le t \le 0.008$ s.

(IV) Make a discussion about your results. Does the code successfully perform demodulation?