Homework 3.

- 1) A plane wave propagating in a medium is $\vec{E}(z,t) = \hat{a}_x 120\pi e^{-\alpha z} \cdot e^{-j\beta z + j\omega t}$ (V/m). If $\omega = 3 \times 10^8$ (rad/s), and the medium is characterized by $\varepsilon_r = 2(1-j)$, $\mu_r = 1$, determine
 - (a) The magnitude of the characteristic impedance $|\eta|$,
 - (b) The phase angle of the characteristic impedance θ_n ,
 - (c) The attenuation constant α .
 - (d) The propagation constant β ,
 - (e) The magnetic field \vec{H} ,
 - (f) The real-time expressions of the fields \bar{E} and \bar{H} .
- 2) A plane wave propagating in a medium is $\vec{E}(z,t) = \hat{a}_x 120\pi e^{-\alpha z} \cdot e^{-j\beta z + j\omega t}$ (V/m). If $\omega = 3 \times 10^8$ (rad/s), and the medium is characterized by $\varepsilon_r = 2$, $\mu_r = 1$, $\sigma = 32\pi$ S/m, determine
 - (a) The magnitude of the characteristic impedance $|\eta|$,
 - (b) The phase angle of the characteristic impedance θ_n ,
 - (c) The attenuation constant α ,
 - (d) The propagation constant β ,
 - (e) The magnetic field \vec{H} ,
 - (f) The real-time expressions of the fields \vec{E} and \vec{H} .
- 3) A plane wave propagating in a lossy dielectric medium of characteristic impedance $\eta = 100 \angle 30^{\circ}$ is described by $\bar{H}(z,t) = \hat{a}_y e^{-\alpha z} \cdot e^{-j\beta z + j\omega t}$ (V/m). If the propagation constant is given to be $\beta = 1/2$ (rad/m), determine
 - (a) The attenuation constant α ,
 - (b) The electric field \vec{E} .
- 4) Find the skin depth at a frequency of 1.6 MHz in aluminum, where $\sigma = 38.2 \times 10^6$ S/m and $\mu_r = 1$.