Homework 1.

- 1) In free space, $\vec{E}(z,t) = \hat{a}_y 100e^{-jkz+j\omega t}$. Obtain $\vec{H}(z,t)$.
- 2) In the medium with $\varepsilon_r = 2$ and $\mu_r = 1$, $\vec{H}(z,t) = \hat{a}_x 10e^{-jkz+j\omega t}$. Obtain $\vec{E}(z,t)$.
- 3) In a uniform dielectric medium, $\vec{E}(z,t) = \hat{a}_x 300 e^{-jkz+j\omega t}$, $\vec{H}(z,t) = 2\hat{a}_y e^{-jkz+j\omega t}$. Determine the characteristic impedance of the medium.
- 4) For a plane wave in free space, $\hat{E} = \frac{1}{\sqrt{2}}(-\hat{a}_x + \hat{a}_y)$, $\hat{H} = \hat{a}_z$. Determine the propagation direction of the wave.