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Abstract. An involutory decomposition is a decomposition, due to an involution, of a group into

a twisted subgroup and a subgroup. We study unexpected links between twisted subgroups and

gyrogroups. Twisted subgroups arise in the study of problems in computational complexity. In

contrast, gyrogroups are grouplike structures which first arose in the study of Einstein’s velocity

addition in the special theory of relativity. Particularly, we show that every gyrogroup is a twisted

subgroup and that, under general specified conditions, twisted subgroups are gyrocommutative

gyrogroups. Moreover, we show that gyrogroups abound in group theory and that they possess

rich structure.

§1. Introduction

Under general conditions, twisted subgroups are near subgroups [1]. Feder and
Vardi [4] introduced the concept of a near subgroup of a finite group as a tool to
study problems in computational complexity involving the class NP . Aschbacher
provided a conceptual base for studying near subgroups demonstrating that near
subgroups possess much structure, so that it seems likely that [1] ”one can com-
pletely describe all near subgroups [of finite groups] in some sense, using classifica-
tion of the finite simple groups.”

Gyrogroups are essentially equivalent to gyrotransversals which are twisted sub-
groups, Theorem 3.8. Gyrogroups are special loops which share remarkable analo-
gies with groups. The first known gyrogroup structure is the relativistic gyrogroup
(�3

1,⊕) that appeared in 1988 [8], consisting of the unit ball �3
1 of the Euclidean

3-space �3
1 with Einstein’s addition. The Einstein velocity addition ⊕ of rela-

tivistically admissible velocities is a binary operation in the unit ball �3
1 = {x ∈

�3 : ||x|| < 1} of the Euclidean 3-space �3, where the vacuum speed of light is
normalized to c = 1. Counterintuitively, the Einstein velocity addition is neither
commutative nor associative. Is the progress from the common vector addition of
velocities +, which is a group operation, to the Einstein velocity addition ⊕, which
is not a group operation, associated with loss of mathematical regularity?

It has been shown in [11] that the group structure that has been lost in the
transition from the group (�3,+) to the nongroup groupoid (�3

1,⊕) is replaced by
a loop structure using a relativistic peculiar rotation called theThomas precession.
Extending the Einstein relativistic groupoid (�3

1,⊕) with its Thomas precession by
abstraction, the gyrogroup notion emerges, where the abstract Thomas precession
is called theThomas gyration. The Thomas gyration has its own life due to powerful
properties that it possesses. It suggests the prefix gyro that we extensively use to
emphasize analogies. Thus, for instance, gyrogroup operations are gyroassociative
and, sometimes gyrocommutative, in full analogy with group operations which are
associative and, sometimes commutative. Moreover, some commutative groups can
be extended to vector spaces by the introduction of scalar multiplication and inner
product and, in full analogy, some gyrocommutative gyrogroups can be extended
to gyrovector spaces. Then, unexpectedly, gyrovector spaces provide the setting for
hyperbolic geometry in full analogy with vector spaces, that provide the setting for
Euclidean geometry [11,13]. Hence, the hyperbolic geometry of Bolyai-Lobachevski
is in fact the gyro-Euclidean geometry. Like groups, there are finite and infinite
gyrogroups some of which are gyrocommutative. We obtain particularly interesting
results when the order of the group in which a gyrogroup resides as a twisted
subgroup is odd.

Unexpectedly, gyrogroups are twisted subgroups and, under specified general
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conditions, twisted subgroups are gyrogroups. By demonstrating the rich structure
of gyrogroups, and by demonstrating that gyrogroups and twisted subgroups are
intimately related, we support Aschbacher’s observation that [1] ”near subgroups
possess much structure.” Furthermore, Aschbacher’s hope to completely describe
all near subgroups in some sense, using the classification of the finite simple groups,
may result in the complete description of all finite gyrogroups as well.

To show that gyrogroups abound in group theory we show in Theorem 5.1 that
every odd order group that possesses an involutory automorphism contains a gy-
rocommutative gyrogroup. More specifically, we find that any involutory auto-
morphism of an odd order group gives rise to a unique decomposition, called the
involutory decomposition, that decomposes the group into the product of a twisted
subgroup and a subgroup. We identify the twisted subgroup factor in the involutory
decomposition as a gyrocommutative gyrogroup. Gyrogroups are, thus, everywhere
in group theory, lying dormant waiting for their discovery. The gyrogroup definition
follows.
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§2. Gyrogroups, and Groups Containing Gyrogroups

Definition 2.1. (Groupoids or Magmas, and Automorphism Groups of Groupoids)
A groupoid [3] or a magma [2] is a nonempty set with a binary operation. An

automorphism of the groupoid (S, ·) is a bijection of S that respects the binary
operation · in S. The set of all automorphisms of (S, ·) forms a group denoted by
Aut(S, ·).

An important subcategory of the category of groupoids is the category of loops,
which are defined below.

Definition 2.2. (Loops [3]) A loop is a magma (S, ·) with an identity element in
which each of the two equations a · x = b and y · a = b for the unknowns x and y
possesses a unique solution (a · x is the product of a and x in S. Subsequently we
will omit the dot and write ax).

Being nonassociative, the Einstein velocity addition of relativistically admissible
velocities in the special theory of relativity is not a group operation. A gyrogroup is
a special grouplike loop that has been abstracted from the groupoid of all relativis-
tically admissible velocities with their Einstein’s velocity addition and Thomas’
precession [11]. The abstract Thomas precession is called the Thomas gyration,
suggesting the prefix gyro that we extensively use to emphasize analogies.

Definition 2.3. (Gyrogroups [11], Left Gyrogroups) The magma (G,	) is a
gyrogroup if its binary operation satisfies the following axioms. In G there is at
least one element, 1, called a left identity, satisfying

(G1) 1	a = a Left Identity

for all a ∈ G. There is an element 1 ∈ G satisfying axiom (G1) such that for
each a in G there is an x in G, called a left inverse of a, satisfying

(G2) x	 a = 1 Left Inverse

Moreover, for any a, b, z ∈ G there exists a unique element gyr[a, b]z ∈ G such
that

(G3) a	 (b	 z) = (a	 b)	 gyr[a, b]z Left Gyroassociative Law

If gyr[a, b] denotes the map gyr[a, b] : G→ G given by z �→ gyr[a, b]z then

(G4) gyr[a, b] ∈ Aut(G,	) Gyroautomorphism

and gyr[a, b] is called the Thomas gyration, or the gyroautomorphism of G, gen-
erated by a, b ∈ G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G satisfies

(G5) gyr[a, b] = gyr[a	 b, b] Left Loop Property

A magma (G,	) is a left gyrogroup if it satisfies axioms (G1)-(G4), and

(G5’) gyr[a, a−1] = id Weak Loop Property
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Definition 2.4. (Gyrocommutative Gyrogroups) The gyrogroup (G,⊕) is gyro-
commutative if for all a, b ∈ G

(G6) a⊕b = gyr[a, b](b⊕a) Gyrocommutative Law

As it is customary with groups, we use additive notation, ⊕, with gyrocommu-
tative gyrogroups, and multiplicative notation, 	, with general gyrogroups.

Definition 2.5. (Gyrations, Gyroautomorphisms, Gyroautomorphism Groups)
The automorphisms gyr[a, b] of a gyrogroup are called gyroautomorphisms. The
action of the gyroautomorphism gyr[a, b] on G is called a gyration. The set of all
gyroautomorphisms of a gyrogroup (G,	) need not form a group. A gyroautomor-
phism group of (G,	) is any subgroup Auto(G,	) (not necessarily the smallest
one) of Aut(G,	) containing all the gyroautomorphisms of (G,	).

Properties of gyrogroups have been studied in [11] where, in particular, the
following alternative, equivalent definition of a gyrogroup is presented.

Theorem 2.6 (Gyrogroups - an Alternative Definition [11]). A magma
(G,	) is a gyrogroup if its binary operation satisfies the following axioms and prop-
erties. In G there exists a unique element, 1, called the identity, satisfying

(g1) 1	 a = a	 1 = a Identity

for all a ∈ G. For any a ∈ G there exists in G a unique inverse, a−1, satisfying

(g2) a−1 	 a = a	 a−1 = 1 Inverse

Moreover, if for any a, b ∈ G the map gyr[a, b] of G into itself is given by the
equation

gyr[a, b]z = (a	 b)−1 	 (a	 (b	 z))

for all z ∈ G, then the following hold for all a, b, c ∈ G.

(g3) gyr[a, b] ∈ Aut(G,	) Gyroautomorphism

(g4a) a	 (b	 c) = (a	 b)	 gyr[a, b]c Left gyroassociative Law

(g4b) (a	 b)	 c = a	 (b	 gyr[b, a]c) Right gyroassociative Law

(g5a) gyr[a, b] = gyr[a	 b, b] Left Loop Property

(g5b) gyr[a, b] = gyr[a, b	 a] Right Loop Property

Twisted subgroups prove useful as a tool to study problems in computational
complexity [1]. We will see in this article that gyrogroups are intimately related to
twisted subgroups, which are defined below.

Definition 2.7. (Twisted Subgroups [1]) A subset P of a group G is a twisted
subgroup of G if (i) 1G ∈ P , 1G being the identity element of G; and (ii) aPa ⊆ P
for all a ∈ P .

Every gyrogroup is a twisted subgroup of some specified group (Theorems 2.12
and 3.8), and some twisted subgroups are gyrogroups (Corollary 3.11). To expose
the relationship between gyrogroups and twisted subgroups we will explore prop-
erties of gyrogroups in terms of groups that contain them as a subset. To enable
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us to study gyrogroups in terms of groups that may contain them we introduce the
following definitions and a theorem.

Definition 2.8. (Transversals, the Transversal Operation, the Transversal Map,
and Transversal Groupoids) A set B is a transversal in a group G (all transversals
in this article are left transversals) of a subgroup H of G if every g ∈ G can be
written uniquely as g = bh where b ∈ B and h ∈ H. Let b1, b2 ∈ B be any two
elements of B, and let

(2.1) b1b2 = (b1 	 b2)h(b1, b2)

be the unique decomposition of the element b1b2 ∈ G, where b1 	 b2 ∈ B and
h(b1, b2) ∈ H, determining (i) a binary operation, 	, in B, called the transversal
operation of B induced by G, and (ii) a map h : B×B → H, called the transversal
map. The element h(b1, b2) ∈ H is called the element of H determined by the two
elements b1 and b2 of its transversal B in G (its importance stems from the fact
that it gives rise to gyrations in Definition 2.10 below. Gyrations, in turn, result
from the abstraction of the Thomas precession of the special theory relativity into
the Thomas gyration). A transversal groupoid (B,	) of H in G is a groupoid
formed by a transversal B of H in G with its transversal operation 	.

Definition 2.9. (Gyrotransversals, Gyrotransversal Groupoids, Gyro
-Decompositions of Groups) A transversal groupoid (B,	) of a subgroup H in a
group G is a gyrotransversal of H in G if

(i) 1G ∈ B, 1G being the identity element of G;

(ii) B = B−1; and

(iii) B is normalized by H, H ⊆ NG(B), that is, hBh−1 ⊆ B for all h ∈ H.

A gyrotransversal groupoid is a groupoid formed by a gyrotransversal with its
transversal operation. The decomposition G = BH where H < G and where B is
a transversal of H in G is a gyro-decomposition if B is a gyrotransversal of H in G.
The gyro-decomposition G = BH is reduced if CH(B) = {1G}.
Notation. In this paper we will use the notation bh = hbh−1 as in [5].

Definition 2.10. (Gyrations of a Gyrotransversal) Let B be a gyrotransversal
of a subgroup H in a group G = BH, let b1, b2 ∈ B be any two elements of B, and
let h(b1, b2) be the element of H determined by b1 and b2, h being the transversal
map h : B ×B → H, Def. 2.8. Then the gyration gyr[b1, b2] of B generated by b1
and b2 is the map of B into itself given by

gyr[b1, b2] = αh(b1,b2)

where αh, h ∈ H, denotes conjugation by h, that is, for any h ∈ H and b ∈ B

αh(b) = bh = hbh−1

It follows from Definition 2.10 that a gyration of B generated by b1, b2 ∈ B is
given in terms of its effects on x ∈ B by the equation

(2.2a) gyr[b1, b2]x = h(b1, b2)x(h(b1, b2))−1
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or, equivalently, by the equation

(2.2b) gyr[b1, b2]x = xh(b1,b2)

The conjugation operations αh, h ∈ H, are bijections of B since B is normalized
by H. Hence, in particular, the gyrations gyr[b1, b2] are bijections of B for all
b1, b2 ∈ B. Moreover, the gyrations of a gyrotransversal B are automorphisms of
the gyrotransversal groupoid (B,	) as shown in the following

Theorem 2.11. Let (B,	) be a gyrotransversal groupoid of a subgroup H in a
group G. Then, for any b1, b2 ∈ B

gyr[b1, b2] ∈ Aut(B,	)

Proof. Since, by Eq. (2.2b), gyr[a, b]x = xh(a,b) for all x ∈ B, we have to show that

(x	 y)h(a,b) = xh(a,b) 	 yh(a,b)

for all a, b, x, y ∈ B.
More generally, however, we will verify the desired identity for any k ∈ H re-

gardless of whether or not k possesses the form k = h(a, b). We will thus show
that

(x	 y)k = xk 	 yk

for any k ∈ H. Clearly, we have in G

(2.3) (xy)k = xkyk

Employing the unique decomposition G = BH, Eq. (2.1), for both sides of (2.3)
we have

(2.4) (xy)k = ((x	 y)h(x, y))k = (x	 y)kh(x, y)k

on one hand, and

(2.5) xkyk = (xk 	 yk)h(xk, yk)

on the other hand. It follows from (2.3) - (2.5) and from the uniqueness of the
decomposition G = BH that

(2.6) (x	 y)k = xk 	 yk

and, by the way,

(2.7) h(xk, yk) = h(x, y)k

Eq. (2.6) completes the proof. �
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Theorem 2.12. (Representation Theorem for Gyrogroups) If (B,	) is a left-
gyrogroup and H a gyroautomophism group of (B,	), then there is a group G in
which H is a subgroup of G and (B,	) is a gyrotransversal groupoid of H such that
for each h ∈ H and x ∈ B, h(x) = xh.

Proof. This result is proved in section 4 of [11] for gyrogroups, but the proof does
not use the left loop property so that it is valid for left gyrogroups. �

Theorem 2.13. Any gyrotransversal B of a subgroup H in G is a left gyrogroup

Proof. We have to show that (B,	) satisfies axiomas (G1)-(G4). Axiom (G4) is
verified in Theorem 2.11. It therefore remains to establish the validity of axioms
(G1)-(G3).

Given b ∈ B we get

b = 1b = (1	 b)h(1, b) and 1 = b−1b = (b−1 	 b)h(b−1, b)

Hence,(G1) and (G2) are verified from the uniqueness of the decomposition.
for all a, b, c ∈ B we clearly have in G

(2.8) (ab)c = a(bc)

Employing the uniqueness of the decomposition for both sides of (2.8) we have

(ab)c = (a	 b)h(a, b)c

= (a	 b)gyr[a, b]ch(a, b)

= ((a	 b)	 gyr[a, b]c)h(a	 b, gyr[a, b]c)h(a, b)

(2.9)

on one hand, and

a(bc) = a(b	 c)h(b, c)

= (a	 (b	 c))h(a, b	 c)h(b, c)

(2.10)

on the oher hand. It follows from (2.8)-(2.10) and from the uniqueness of the
decomposition that

(a	 b)gyr[a, b]c = a	 (b	 c)

thus verifying (G3). �
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§3. Gyrotransversals are Twisted Subgroups

We will show in this section that a gyrotransversal groupoid in a group is a
gyrogroup if and only if the gyrotransversal is a twisted subgroup of G when the
group G containing the twisted subgroup is reduced in the sense of Definition 3.4
below. In the following Lemma, CH(B) denotes the centralizer of B in H < G.

Lemma 3.1. Let G = BH be a group where H < G. If H ⊆ NG(B) then CH(B)�
G.

Proof. Let A = 〈B〉. Since G = BH, we have G = AH and since H acts on
B, H acts on A, so CH(B) = CH(A) � H. Finally A acts on CH(A), so
G = AH ≤ NG(CH(A)). �
Lemma 3.2. Let (B,	) be the gyrotransversal groupoid of a subgroup H of a
group G, G = BH. Then (B,	) is the gyrotransversal groupoid of the subgroup
HB = H/CH(B) in the group GB = G/CH(B).

Proof. The permutation representation of G on G/H is equivalent to the represen-
tation of G on B by conjugation. The group GB is just the image of G under this
representation. �
Definition 3.3. (Transversal Enveloping Pairs) Let B be a transversal of a
subgroup H in a group G. We say that G (H) is an enveloping group (subgroup)
of the transversal B. Furthermore, we say that (G,H) is an enveloping pair of the
transversal B and of the transversal groupoid (B,	).

Definition 3.4. (Reduced Enveloping Pairs of Gyrotransversals) Let B be a
gyrotransversal with an enveloping pair (G,H). The corresponding reduced en-
veloping pair of the gyrotransversal B and of the gyrotransversal groupoid (B,	)
is the pair

(GB,HB) = (G/CH(B),H/CH(B))

It follows from Lemma 3.2 that a reduced enveloping pair of a gyrotransversal
groupoid is an enveloping pair of the gyrotransversal groupoid.

We clearly have the following Lemma, which exposes the importance of reducing
enveloping pairs.

Lemma 3.5. If the enveloping pair (G,H) of the gyrotransversal B of H in G
is reduced, that is, (G,H) = (GB,HB), then CH(B) = {1H} is the trivial group
consisting of the identity element of H.

Theorem 3.6. Let B be a gyrotransversal with a reduced enveloping pair (G,H).
Then the map h �→ αh is a bijection of h(B×B) with the set of all gyrations of B.

Proof. By definition, the gyrations gyr[b1, b2] of B, b1, b2 ∈ B correspond to ele-
ments of h(B ×B) ⊆ H by the relation

gyr[b1, b2] = αh(b1,b2)

where αh is the inner automorphism of B given by αhb = bh for all b ∈ B and
h ∈ H. And the map α : h �→ αh is an injective group homomorphism from H into
the symmetric group on B as ker(α) = CH(B) = {1H}, so that its restriction to
h(B ×B) is injective. �
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It follows from Lemma 3.2 and Definition 3.3 that in the study of gyrotransver-
sal groupoids on their own merits, rather than on merits of the group where they
reside, one may assume without loss of generality that any gyrotransversal under
consideration resides in one of its reduced enveloping groups. This results in the
advantage of having a bijective correspondence between gyrations and transversal
maps. Specifically, let (B,	) be a gyrotransversal groupoid with a reduced envelop-
ing pair (G,H). Then, there exists a bijective correspondence between the gyrations
gyr[b1, b2] ∈ Aut(B,	) of the gyrotransversal B and the elements h(b1, b2) ∈ H of
the image in H of the transversal map h. As an example, we present the reduced
enveloping pair of Einstein’s gyrogroup (�n

c ,⊕E), where �n
c = {v∈�n : ||v|| < c} is

the open c-ball of the Euclidean n-space �n, and where ⊕E is the Einstein addition,
defined in [11] (No explicit presentation of ⊕E is needed in Example 3.7).

Example 3.7. The Lorentz group, parametrized by a velocity and an orientation
parameter, is a group of pairs

(3.1a) L = {(v, V ) : v ∈ �n
c , V ∈ SO(n)}

with group operation given by

(3.1b) (u, U)(v, V ) = (u⊕EUv, gyr[u, Uv]UV )

where ⊕E is the Einstein velocity addition [11] and where SO(n) is the special
orthogonal group. The Lorentz group L and the orthagonal group SO(n) constitute
a reduced enveloping pair, (L, SO(n)), of the Einstein gyrotransversal (�n

c ,⊕E).

We are now in a position to state the conditions under which twisted subgroups
and gyrogroups are equivalent.

Theorem 3.8. A gyrotransversal groupoid (P,	) with a reduced enveloping pair
(G,H) is a gyrogroup if and only if P is a twisted subgroup of G, and h(a, b) =
h−1(b, a) (note from the proof that h(a, b) = h−1(b, a) is satisfied in the gyrocom-
mutative case).

Proof. Let us assume that P is a twisted subgroup. Then, aba ∈ P for any a, b ∈ P .
We wish to show that the gyrotransversal groupoid (P,	) of H in G is a gyrogroup.
Clearly, bb = b1Gb ∈ P . Hence, abba ∈ P . But, in G for the gyrocommutative case,

abba = (ab)(ba)

= (a	 b)h(a, b)(b	 a)h(b, a)

= (a	 b)(b	 a)h(a,b)h(a, b)h(b, a)

implying
h(a, b)h(b, a) = 1H

Hence,
h−1(b, a) = h(a, b)

Similarly, since aba ∈ P we have in G

aba = a(ba)

= a(b	 a)h(b, a)

= a	 (b	 a)h(a, b	 a)h(b, a)
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implying
h(a, b	 a)h(b, a) = 1H

so that
h(a, b	 a) = h−1(b, a) = h(a, b)

thus obtaining the right loop property h(a, b	 a) = h(a, b). Inverting by means of
h−1(a, b) = h(b, a) we obtain the desired left loop property for h, h(b	a, a) = h(b, a)
for all a, b ∈ P .

Since gyr[a, b] = αh(a,b) we have

gyr[a	 b, b] = gyr[a, b]

for all a, b ∈ P . Hence, the gyrotransversal groupoid (P,	) possesses the left
loop property. By Theorem 2.13 the gyrotransversal groupoid (P,	) is therefore a
gyrogroup.

Conversely, we now assume that (P,	) is a gyrogroup. Let a, b ∈ P be any two
elements of P . We will show that the composition aba in G is an element of P .
Gyrations gyr[a, b] in P are in bijective correspondence with elements h(a, b) ∈ H
of the image h(B×B) of h in H, by Theorem 3.6. Hence, the (left and) right loop
property for gyr[a, b] is valid for h(a, b) as well, that is, gyr[a, b] = gyr[a, b 	 a],
implying h(a, b) = h(a, b	 a). Similarly, the identity gyr−1[a, b] = gyr[b, a] implies
h−1(a, b) = h(b, a). Following these properties of h we have in G

aba = a(ba)

= a(b	 a)h(b, a)

= a	 (b	 a)h(a, b	 a)h(b, a)

= a	 (b	 a)h(a, b)h(b, a)

= a	 (b	 a) ∈ P

for all a, b ∈ P . Hence, P is a twisted subgroup of G, thus completing the proof. �
Corollary 3.9. Let G = AH, H < G, be a gyro-decomposition of G, Def. 2.9. If
A is a twisted subgroup of G then A is a gyrogroup.

Proof. The proof follows from the first part of the proof of Theorem 3.8. �
Corollary 3.9 suggests the following definition.

Definition 3.10. (Gyro-Twisted Subgroups) A twisted subgroup P in a group
G is a gyro-twisted subgroup if P is a gyrotransversal of some subgroup H < G in
G.

Following Definition 3.10, Corollary 3.9 can now be stated as

Corollary 3.11. Any gyro-twisted subgroup P in a group G is a gyrogroup (P,	),
whose gyrogroup operation is the transversal operation of P induced by G.

Example 3.12. The most general Möbius transformation of the complex unit disc
D = {z : |z| < 1} in the complex z-plane [12],

z �→ eiθ z0 + z

1 + z̄0z
= eiθ(z0 ⊕ z)
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defines the Möbius addition ⊕ in the disc, allowing the Möbius transformation of
the disc to be viewed as a Möbius left translation z �→ z0⊕z followed by a rotation.
Here θ ∈ � is a real number, z0 ∈ D, and z̄0 is the complex conjugate of z0. The
Möbius addition of two real numbers in the disc specializes to the Einstein velocity
addition of parallel velocities in the special theory of relativity. A left Möbius
translation is also called a left gyrotranslation [11]. Left gyrotranslations occur
frequently in hyperbolic geometry [12], and are sometimes called hyperbolic pure
translations.

The Möbius transformations of the disc D form a group, M . The rotations
z �→ eiθz of the disc about its center form a subgroup R of M . In contrast, the left
gyrotranslations z �→ z0 ⊕ z of the disc do not form a subgroup of M . They do,
however, form a twisted subgroup T of M . Furthermore, T is a transversal of R in
M , T−1 = T and T is normalized by R inM . Hence, the twisted subgroup T ofM is
a gyro-twisted subgroup. As such, according to Corollary 3.11, the groupoid (T,⊕)
formed by the gyro-twisted subgroup T of R in M with its transversal operation ⊕
is a gyrogroup. This gyrogroup is studied in [10].
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§4. Involutory Decompositions and Gyrocommutative Gyrogroups

Definition 4.1. (Involutory automorphisms) An automorphism of a group G is
involutory if it equals its inverse automorphism.

The main result of this article is presented in the following theorem, demon-
strating that gyrocommutative gyrogroups are associated with involutory auto-
morphisms that groups in which they reside as subsets must possess.

Theorem 4.2. Let G = AH be a reduced gyro-decomposition of a group G, H < G.
If A is a gyrocommutative gyrogroup, then there exists an involutory automorphism
τ ∈ Aut(G) such that

τ(h) = h

for all h ∈ H, and
τ(a) = a−1

for all a ∈ A.

Proof. We define τ : G → G by τ(g) = a−1h for g = ah ∈ G, a ∈ A and h ∈ H.
Clearly, τ2 = 1, and τ is bijective. It remains to show that τ is a homomorphism.
For this we need to use Theorem 5.5 of [11] according to which h(a−1, b−1) = h(a, b)
for a, b ∈ A in any Gyrogroup A, and Theorem 5.9 of [11] according to which

(a 	 b)−1 = a−1 	 b−1 for a, b ∈ A if and only if the gyrogroup A is Gyro-
commutative. Let g1 = a1h1 and g2 = a2h2 be any two elements of G. On one
hand

τ(g1)τ(g2) = τ(a1h1)τ(a2h2)

= a−1
1 h1a

−1
2 h2

= a−1
1 (a−1

2 )h1h1h2

= a−1
1 	 (a−1

2 )h1h(a−1
1 , (a−1

2 )h1)h1h2

= a−1
1 	 (ah1

2 )−1h(a−1
1 , (ah1

2 )−1)h1h2

= a−1
1 	 (ah1

2 )−1h(a1, a
h1
2 )h1h2

and, on the other hand,

τ(g1g2) = τ(a1h1a2h2)

= τ(a1a
h1
2 h1h2)

= τ(a1 	 ah1
2 h(a1, a

h1
2 )h1h2)

= (a1 	 ah1
2 )−1h(a1, a

h1
2 )h1h2

= a−1
1 	 (ah1

2 )−1h(a1, a
h1
2 )h1h2

Hence,
τ(g1g2) = τ(g1)τ(g2)

as desired. �

Theorem 4.2 suggests the following two definitions.
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Definition 4.3. (Inverters and Stabilizers of Automorphisms in Groups) For any
automorphism τ ∈ Aut(G) of a group G let the subset K(τ) and the subgroup C(τ)
be given by

K(τ) = {g ∈ G|τ(g) = g−1}
C(τ) = {g ∈ G|τ(g) = g}

The subset K(τ) of G is called the inverter of τ in G, and the subgroup C(τ) of G
is called the stabilizer of τ in G.

It follows from Theorem 4.2 that if G = AH, H < G, is a gyro-decomposition
of a group G, and if A is a gyrocommutative gyrogroup, then there exists an
automorphism τ ∈ Aut(G) such that H ≤ C(τ), A ⊆ K(τ), and G = K(τ)C(τ).
This suggests the following definition and theorem.

Definition 4.4. (Involutory Decompositions) A gyro-decomposition (Def. 2.9)
G = AH of a group G is involutory, with respect to an involutory automorphism
τ , if there exists an involutory automorphism τ ∈ Aut(G) such that A ⊆ K(τ) and
H ≤ C(τ).

Theorem 4.5. Let G = AH be a gyro-decomposition of a group G where (i) A is a
twisted subgroup of G and (ii) H is a subgroup of G. Then, the decomposition G =
AH is involutory if and only if the transversal groupoid (A,	) is a gyrocommutative
gyrogroup.

Proof. Let G = AH be a gyro-decomposition of G where A is a twisted subgroup
of G and H is a subgroup of G. To verify that involutory decomposition implies
gyrocommutivity we assume that the decomposition is involutory. Since the de-
composition is a gyro-decomposition, Def. 2.9, A is a gyrotransversal of H in G.
Hence, by Def. 3.10, A is a gyro-twisted subgroup of G. Hence, by Corollary 3.11,
(A,	) is a gyrogroup whose operation is the transversal operation of A induced by
G. It remains to verify that the gyrogroup (A,	) is gyrocommutative. Let a, b ∈ A.
On one hand

τ(ab) = τ((a	 b)h(a, b))

= (a	 b)−1h(a, b)

and on the other hand,

τ(ab) = τ(a)τ(b)

= a−1b−1

= (a−1 	 b−1)h(a−1, b−1)

Hence, by the unique decomposition

(a	 b)−1 = a−1 	 b−1

so that by Theorem 5.9 in [11], the gyrogroup A is gyrocommutative.
Conversely, let G = AH be a gyro-decomposition of G as above. We now assume

that the transversal groupoid (A,	) is a gyrocommutative gyrogroup, and wish to
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show that the decomposition is involutory. This follows immediately from Theorem
4.2. �

Thus, it follows from Theorems 4.2 and 4.5 that all gyrocommutative gyrogroups
arise from the presence of involutory automorphisms. If a group G contains a
gyrocommutative gyrogroup then there must exist an automorphism τ ∈ Aut(G)
such that

(4.1) K(τ)C(τ) = G

Hence, the existence of a gyrocommutative gyrogroup in a group is linked to the
existence of an involutory automorphism of the group that decomposes it according
to Eq. (4.1). The following Lemma provides us with an interesting special example
that results from Theorem 4.5 when A = K(τ).

Theorem 4.6. Let G be a group such that G = K(τ)H where τ ∈ Aut(G) and
H < G. If

(i) H ≤ C(τ)

(ii) K(τ) is a transversal of H in G

then the inverter K(τ) of τ in G with its transversal operation is a gyrocommu-
tative gyrogroup.

Proof. By Theorem 4.5 we must show that K(τ) is a gyrotransversal of H in G,
and a twisted subgroup of G. (i) 1G ∈ K(τ) since τ(1G) = 1G. (ii) Clearly, if
a ∈ K(τ) then a−1 ∈ K(τ). (iii) K(τ) is normalized by H for if a ∈ K(τ) and
h ∈ H, then

τ(hah−1) = τ(h)τ(a)τ(h−1)

= ha−1h−1

= (hah−1)−1

implying hah−1 ∈ K(τ) so that H ⊆ NG(K(τ)). It follows from (i) − (iii) and
the gyrotransversal definition that K(τ) is a gyrotransversal of H in G. Finally,
if a, b ∈ K(τ), then τ(aba) = τ(a)τ(b)τ(a) = a−1b−1a−1 = (aba)−1 so that aba ∈
K(τ). Hence K(τ) is a twisted subgroup of G, and the proof is complete. �

We may note that the assumption G = K(τ)H in Theorem 4.6, where K(τ) is
a transversal of H in G implies that τ is an involutory automorphism of G.

Definition 4.7. A nonempty subset X of a gyrogroup (P,	) is a subgroup (of a
gyrogroup), if it is a group under the restrriction of 	 to X.

Definition 4.8. A subgroup X of a gyrogroup P is normal in P if
(i) gyr[a, x] = 1 for all x ∈ X and a ∈ P .
(ii) gyr[a, b](X) ⊆ X for all a, b ∈ P .
(iii) a

⊙
X = X

⊙
a for all a ∈ P .



16

Lemma 4.9. If X is a normal subgroup of a gyrogroup P , then P/X forms a
factor gyrogroup.

Proof. By (i)

(a	 x)	 y = a	 (x	 gyr[x, a]y) = a	 (x	 y)

for all x, y ∈ X, so the cosets a
⊙

X partition P . Also by (iii), x 	 b = b 	 y for
some y ∈ X, so

(a	 x)	 b = a	 (x	 gyr[x, a]b) = a	 (x	 b)

= a	 (b	 y) = (a	 b)	 gyr[a, b]y) ∈ (a	 b)	X

as gyr[a, b]y ∈ X by (ii), so the binary operation

(a	X)	 (b	X) = (a	 b)	X

is well defined, hence P/X forms a factor. �
Definition 4.10. Let K be a twisted subgroup of a group G such that G =< K >,
then the K-radical of G [1]

ΞK(G) =

{g ∈ G : g = k1 . . . kn and k−1
1 . . . k−1

n = 1 for some ki ∈ K, i = 1, 2 . . . , n}.

Theorem 4.11. If (P,	) is a gyrogroup, then P has a normal subgroup Ξ such that
P/Ξ is a gyrocommutative gyrogroup (Note that Ξ is a group with group operation
given by the resriction of 	 to Ξ).

Proof. Using the Representation Theorem 2.12, we can realize P as a gyrotransver-
sal groupoid of a subgroup H of G. Replacing G by 〈P 〉, we may assume G = 〈P 〉,
and replacing G by G/CH(P ) we may assume the enveloping pair (G,H) is reduced,
so that by Theorem 3.8, P is a twisted subgroup of G. Let Ξ = ΞP (G) be defined
as in Definition 4.10. By 2.1.2 in [1], ax ∈ P for each a ∈ P and x ∈ Ξ, so that
a	 x = ax and (i) of Definition 4.8 holds for X = Ξ. Also the group operation of
Ξ is the resriction of 	 to Ξ, so that Ξ is a subgroup of P . By 2.1.1 of [1] Ξ is a
normal subgroup of G. Hence (ii) of Definition 4.8 holds for X = Ξ. Also

(a	 Ξ) = aΞ = Ξa = Ξ	 a

so that (iii) of Definition 4.8 holds for X = Ξ. Hence Ξ is a normal subgroup of
P . Let Ḡ = G/Ξ, then P̄ is a gyrotransversal of H̄ in Ḡ and the corresponding
gyrogroup is isomorphic to P/Ξ. By 2.2 in [1], there is a unique involutory auto-
morphism τ of Ḡ, such that P̄ ⊆ K(τ). Now for h̄ ∈ H̄, as h̄ acts on P̄ , τ h̄ also
inverts P̄ , so that by the uniqueness of τ , h̄ centralizes τ . Hence by Theorem 4.5,
P/Ξ is a gyrocommutive gyrogroup. �
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§5. Gyrocommutative Gyrogroups in Groups of Odd Order

Groups of odd order provide an abundant supply of gyrocommutative gyro-
groups, as we see in the following theorem.

Theorem 5.1. If G is a group of odd order possessing an involutory automorphism
τ ∈ Aut(G). Then G = PH where H = C(τ) ≤ G is the stabilizer of τ in G, and
where P = K(τ) is the inverter of τ in G. Furthermore, P is a transversal of H
in G whose transversal groupoid (P,⊕) forms a gyrocommutative gyrogroup.

If the inverter P = K(τ) of τ in G is not an Abelian normal subgroup of G, then
(P,⊕) is not a subgroup of G.

Proof. Let P = K(τ) and H = C(τ) be the inverter and the stabilizer of τ in G,
and let f : G → G be given by

f(x) = x−1xτ

Then f(x) = f(y) if and only if y ∈ Hx. Indeed,

f(x) = f(y) ↔ x−1xτ = y−1yτ

↔ yx−1xτ = yτ

↔ yx−1 = yτ (xτ )−1 = (yx−1)τ

↔ yx−1 ∈ C(τ) = H

↔ y ∈ Hx

Let G//H be the set of all right cosets of H in G, and let φ : G//H → G be
given by φ(Hx) = f(x) for all x ∈ G. It follows from the above mentioned property
of f that φ is injective.

Moreover, f(x) ∈ K(τ) since

(f(x))τ = (x−1xτ )τ

= (x−1)τxτ2

= (xτ )−1x

= (x−1xτ )−1

= (f(x))−1

Hence, {f(x) : x ∈ G} ⊆ P .
For distinct x, y ∈ P , Hx �= Hy, since if x = hy then

y−1h−1 = x−1 = τ(x) = τ(hy) = τ(h)τ(y) = hy−1

so hy = h−1 and hence y2 ∈ CG(h). Then as y is of odd order, y ∈ CG(h), so
h = hy = h−1 and thus h = 1 as h is of odd order. Therfore,

|P | ≥ |φ(G/H)| = |G/H| ≥ |P |

so that φ(G/H) = {f(x) : x ∈ G} = P
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Thus, the inverter P = K(τ) is a transversal of H = C(τ) in G. Hence, by
Theorem 4.6, P is a gyrocommutative gyrogroup.

If P is a subgroup of G then, since it is a gyrotransversal of G, it is a normal
subgroup (being normalized by H and by itself) and since it is gyrocommutative,
it is Abelian. Hence, if P is not an Abelian normal subgroup of G then it is not a
subgroup of G. �

The inverter P = K(τ) and the stabilizer H = C(τ) of any involutory automor-
phism τ ∈ Aut(G), that give rise to the involutory decomposition G = PH and to
the gyrocommutative gyrogroup (P,⊕) in Theorem 5.1, are identified constructively
in the following

Theorem 5.2. Let G be a group of odd order possessing an involutory automor-
phism τ ∈ Aut(G), and let g : G → G be the map of G given by

g(x) = x(xτ )−1

x ∈ G. Then, the inverter K(τ) and the stabilizer C(τ) of τ in G are given by the
equations

K(τ) = {g(x) : x ∈ G}
C(τ) = {

√
g(x)xτ : x ∈ G}

Proof. For all x ∈ G we have the decomposition

(5.1) x =
√
g(x)(

√
g(x)xτ )

Since
g(x)τ = xτ (x−1)τ

2
= xτx−1 = g(x)−1

we have g(x) ∈ K(τ) for all x ∈ G. This, in turn, implies
√
g(x) ∈ K(τ) for all

x ∈ G, so that

(5.2) {
√
g(x) : x ∈ G} ⊆ K(τ)

Similarly, since

(
√
g(x)xτ )τ = (

√
g(x))τxτ2

= (
√
g(x))−1x.

and since

(5.3) (
√
g(x))−1x =

√
g(x)xτ

as we will show below, we have

(
√
g(x)xτ )τ =

√
g(x)xτ

implying
√
g(x)xτ ∈ C(τ) for all x ∈ G, so that

(5.4) {
√
g(x)xτ : x ∈ G} ⊆ C(τ)
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Eq. (5.3) follows from the chain of equations
√
g(x)xτx−1

√
g(x) =

√
g(x)(x(xτ )−1)−1

√
g(x)

=
√
g(x)(g(x))−1

√
g(x)

= 1

The equations in the Theorem for K(τ) and C(τ) follow from the uniqueness of
the decomposition Theorem 5.1 and Eq. (5.1). �

Theorem 5.1 states that any group G of odd order with an involutory automor-
phism τ ∈ Aut(G) possesses the unique decomposition

G = K(τ)C(τ)

as the product (called the gyrosemidirect product) of

(i) the inverter K(τ) of τ in G, which is a gyrocommutative gyrogroup that sits
inside G as a subset; and

(ii) the stabilizer C(τ) of τ in G, which is a subgroup of G.

Theorem 5.2 then identifies the inverter K(τ) and the stabilizer C(τ) of any
involutory automorphism possessed by a group of odd order. The next natural
step is to present in the following theorem the gyrogroup operation of the resulting
gyrocommutative gyrogroup K(τ).

Definition 5.3. Let G be a group of odd order possessing an involutory auto-
morphism τ ∈ Aut(G), and let G = PH be the corresponding decomposition of
G, where P = K(τ) and H = C(τ) are the inverter and the stabilizer of τ in G.
Furthermore, let ⊕ be the transversal operation of the transversal P of H in G.
Then

(i) the transversal groupoid (Def. 2.8) (P,⊕) is called the gyrocommutative gy-
rogroup generated by the pair (G, τ), and

(ii) the subgroup H of G is called the gyrations group generated by the pair (G, τ).

Theorem 5.4. Let G be a group of odd order possessing an involutory automor-
phism τ ∈ Aut(G), let (P,⊕) be the gyrocommutative gyrogroup generated by (G, τ)
and let H be the gyrations group generated by (G, τ). Then, the gyrogroup operation
⊕ of P is given by the equation

x⊕ y =
√
xy2x

and the gyrations of P are

gyr[x, y] = α(
√
xy2xx−1y−1)

for all x, y ∈ P , where α(h) is the inner automorphism of P given by α(h)p = hph−1

for all h ∈ H and p ∈ P .

Proof. Following Theorem 5.1 we have G = PH where P = K(τ) andH = C(τ) are
the inverter and the stabilizer of τ in G. Every x ∈ G has the unique decomposition

x =
√
g(x)(

√
g(x)xτ )
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as a product of an element
√
g(x) ∈ K(τ) and an element

√
g(x)xτ ∈ C(τ).

Let x, y ∈ P be two elements of P . Their product in G has the decomposition

xy = (x⊕ y)h(x, y)

=
√
g(xy)(

√
g(xy)(xy)τ )

where, in P ,

x⊕ y =
√
g(xy)

=
√
xy((xy)τ )−1

=
√
xy(x−1y−1)−1

=
√
xyyx

=
√
xy2x

and in H,

h(x, y) =
√
g(xy)(xy)τ

=
√
xy2xx−1y−1

The elements h(x, y) ∈ H give the gyrations gyr[x, y] of the gyrogroup (P,	) by
gyr[x, y] = α(h(x, y)) according to Def. 2.10, thus completing the proof. �
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