Conjugate-Permutable Subgroups

Tuval Foguel*

Department of Mathematics, University of the West Indies, Mona, Kingston 7, Jamaica

Communicated by Walter Feit

Received September 6, 1996

INTRODUCTION

In the proof that a quasinormal subgroup is subnormal [4], one only needs to show that it is permutable with all of its conjugates. This leads to a new concept concerning subgroups.

DEFINITION. A subgroup H of a group G is a conjugate-permutable subgroup of $G(H <_{C-P}G)$, if $HH^g = H^gH$ for all $g \in G$.

In the first section we prove that conjugate-permutable subgroups are subnormal, and we prove some elementary properties of conjugate-permutable subgroups. We also give examples of subnormal subgroups that are not conjugate-permutable subgroups, and of conjugate-permutable subgroups that are not quasinormal. Some of the results in the second section are:

THEOREM. If G is a finite group and any cyclic subgroup H of any $P \in Syl_p(G)$, $H <_{C-P}G$, then G is nilpotent.

THEOREM. If G is a locally finite group and for some prime p all cyclic subgroups of order a power of p are conjugate-permutable subgroups of G, then $P \in Syl_p(G)$, P is normal in G.

THEOREM. If G is a group containing a finite subgroup P such that $P \in Syl_n(G)$ and $P < {}_{C-P}G$, then P is normal in G.

THEOREM. If G is a locally finite p-group p an odd prime such that any cyclic subgroup $H <_{C-P}G$, then $T_i = \{x \in G \mid O(x) \leq p^i\}$ is a normal subgroup of G.

^{*}E-mail: foguel@uwimona.edu.jm.

THEOREM. If G is a finite group and there exist $H <_{C-P}G$ such that H is a maximum subgroup of a $P \in Syl_p(G)$, then H or P is normal in G.

1. PRELIMINARIES

- *Remark* 1.1. Any quasinormal subgroup is a conjugate-permutable subgroup.
- EXAMPLE 1.1. Let $H = \langle (12)(34) \rangle < S_4$. H is a conjugate-permutable subgroup of S_4 , but H is not a quasinormal subgroup of S_4 .
- LEMMA 1.1. If $H <_{C-P}G$ and $x_1, \ldots, x_n \in G$, then $H^{x_1}H^{x_2} \cdots H^{x_n}$ is permutable with any finite product of conjugates of H.
 - LEMMA 1.2. If $H <_{C-P}G$ and $H \le K \le G$, then $H <_{C-P}K$.
- LEMMA 1.3. If $H <_{C-P}G$, G is a finite group, and $\{g_1, \ldots, g_n\}$ are a transversal of $N_G(H)$, then $H^G = H^{g_1}H^{g_2} \cdots H^{g_n}$ (note that if H is a p-group so is H^G).
- LEMMA 1.4. If $H <_{C-P}G$ and f is a homomorphism of G, then $f(H) <_{C-P}f(G)$.
- LEMMA 1.5. If H is a maximal conjugate-permutable subgroup of G, then $H \triangleleft G$.
- *Proof.* Suppose that H is not normal in G then $\exists g \in G$ such that $H^g \neq H$. Since $HH^g <_{C-P}G$, $HH^g = G$. Let $K = H^g$, now g = hk where $h \in H$ and $k \in K$. Thus $K = H^g = H^{hk} = H^k$, so $K = K^{k^{-1}} = H$, a contradiction.
- COROLLARY 1.1. If $H <_{C-P}G$ and G is a finite group, then H is subnormal in G.
- EXAMPLE 1.2. Let $D_8 = \langle x, y | x^8 = y^2 = 1$, $yxy = x^7 \rangle$, $H = \langle y \rangle$, and $K = \langle yx^6 \rangle$. Then H is subnormal in D_8 (since D_8 is nilpotent), but

$$HK = \{1, yx^6, y, x^6\} \neq \{1, yx^6, y, x^2\} = KH.$$

So H is not a conjugate-permutable subgroup.

- COROLLARY 1.2. If G is a finite group with all maximal subgroups conjugate-permutable subgroups, then G is nilpotent.
- LEMMA 1.6. If $H <_{C-P}G$ and H is a finite simple group, then, for any $g \in G$, $H = H^g$ or $[H, H^g] = \{1\}$.
- *Proof.* Since $H <_{C-P}G$, $H <_{C-P}HH^g$, and HH^g is a finite group. Thus, by Corollary 1.1, H is subnormal in HH^g .

Let $K = H \cap H^g$ from above K is subnormal in H, so K = H or $\{1\}$ (note that K = H if and only if $g \in N_G(H)$). If H is a nonabelian simple group and $g \notin N_G(H)$, then, by [4, 13.3.1], $[H, H^g] = \{1\}$. If H is an abelian simple group and $g \notin N_G(H)$, then HH^g is an abelian group of order p^2 , so $[H, H^g] = \{1\}$.

COROLLARY 1.3. If G is a finite group, $H <_{C-P}G$, and H is a simple group, then

$$H^G \cong \underbrace{H \times H \times \cdots \times H}_{,},$$

where $[G: N_G(H)] = n$ (note that if H is nonabelian, then H^G is a minimal normal subgroup of G).

LEMMA 1.7. If H is a nonabelian simple subnormal subgroup of a finite group G, then $H <_{C-P}G$.

Proof. By [4, 13.3.1], for any $y \in G$, $H = H^g$ or $[H, H^g] = \{1\}$. So $HH^g = H^gH$ and $H <_{C-P}G$. ■

Remark 1.2. If H is an abelian simple subnormal subgroup of a finite group G, then H need not be a conjugate-permutable subgroup of G, for example, H in Example 1.2.

2. THEOREMS

THEOREM 2.1. If G is a group containing a finite subgroup P such that $P \in Syl_p(G)$ and $P < {}_{C-P}G$, then P is normal in G.

Proof. For all $g \in G$, $|PP^g|$ is a p-number. Thus $PP^g \in Syl_p(G)$ and $P \triangleleft G$. \blacksquare

Theorem 2.2. If G is a finite group and there exist $H <_{C-P}G$ such that H is a maximum subgroup of a $P \in Syl_p(G)$, then H or P is normal in G.

Proof. Assume that H is not normal in G. By Lemma 1.3 H^G is a p-group and since $H \neq H^G$, $H^G \in Syl_p(G)$.

COROLLARY 2.1. If G is a finite group and there exist $H <_{C-P}G$ such that H is a maximum subgroup of a $P \in Syl_2(G)$, then G is solvable.

Proof. H^G is a 2-group, and $|G/H^G| = 2m$ or m where m is odd. Thus H^G and G/H^G are solvable, so G is solvable.

LEMMA 2.1. If G is a finite group and for some prime p all cyclic subgroups of order a power of p are conjugate-permutable subgroups of G, then $P \in Syl_p(G)$, P is normal in G.

Proof. Let $P \in Syl_p(G)$, $P = \{x_1, \dots, x_n\}$. By Lemma 1.3 for all i, $\langle x_i \rangle^G$ is a normal p-subgroup of G. Therefore $H = \langle x_1 \rangle^G \cdots \langle x_n \rangle^G$ is a normal p-subgroup of G and $P \leq H$, so P is normal in G.

THEOREM 2.3. If G is a finite group and any cyclic subgroup H of any $P \in Syl_p(G)$, $H <_{C-P}G$, then G is nilpotent.

Proof. By Lemma 2.1 for any prime $P \in Syl_p(G)$, P is normal in G.

Theorem 2.4. If G is a locally finite group and for some prime p all cyclic subgroups of order a power of p are conjugate-permutable subgroups of G, then $P \in Syl_p(G)$, P is normal in G.

Proof. Let x and y be p-elements of G, and $H = \langle x, y \rangle$, H is a finite group satisfying Lemma 2.1 so xy is a p-element. Therefore $S = \{x \in G: x \text{ is a } p\text{-element}\}$ is a normal subgroup of G.

LEMMA 2.2. If G is a finite p-group p an odd prime with all subgroups of order p are conjugate-permutable subgroups of G, then $T = \{x \in G : O(x) \le p\}$ is a normal subgroup of G.

Proof. By Corollary 1.3 for all $x \in T$, $\langle x \rangle^G$ is a normal elementary abelian subgroup of G. Let $x, y \in T$, by [4, 5.2.8], $\langle x \rangle^G \langle y \rangle^G$ is a nilpotent group of class at most 2. Therefore, by [4, 5.3.5],

$$(xy)^p = x^p y^p [x, y]^{\binom{p}{2}},$$

but since $[x, y] \in \langle x \rangle^G \cap \langle y \rangle^G$, O([x, y]) = p or 1. Thus $(xy)^p = x^p y^p = 1$, and T is a normal subgroup.

LEMMA 2.3. If G is a locally finite p-group p an odd prime with all subgroups of order p are conjugate-permutable subgroups of G, then $T = \{x \in G: O(x) \le p\}$ is a normal subgroup of G.

Proof. Let x and $y \in T$, and $H = \langle x, y \rangle$, H is a finite group satisfying Lemma 2.2, so $(xy)^p = 1$.

LEMMA 2.4. If G is a locally finite p-group p an odd prime with all subgroups of order p are conjugate-permutable subgroups of G, then given $x, y \in G$ of order $p \langle x, y \rangle$ is a group of order $\leq p^3$.

Proof. Let $H = \langle x, y \rangle$. Assume that $[x, y] \neq 1$, then $[x, y] \in \langle x \rangle^H \cap \langle y \rangle^H$. So [x, y] commutes with x and y. Thus

$$H = \langle x, y : x^p = y^p = 1, [x, y]^x = [x, y] = [x, y]^y \rangle$$

has order p^3 .

THEOREM 2.5. If G is a locally finite p-group p an odd prime such that any cyclic subgroup $H <_{C-P}G$, then $T_i = \{x \in G \mid O(x) \leq p^i\}$ is a normal subgroup of G.

Proof. By Lemma 2.3, T_1 is a normal subgroup of G. Let i+1 be the first case where T_{i+1} is not a normal subgroup of G. Let $\tilde{G}=G/T_i$, by Lemma 2.3, $\tilde{T}=\{x\in \tilde{G}\colon O(x)\leq p\}$ is a normal subgroup of \tilde{G} , a contradiction.

COROLLARY 2.2. If G is a locally finite group and for some odd prime p all cyclic subgroups of order a power of p are conjugate-permutable subgroups of G, then $T_i = \{x \in G \mid O(x) \leq p^i\}$ is a normal subgroup of G.

Proof. By Theorems 2.4 and 2.5 and the fact that T_i is a normal subset of G.

REFERENCES

- 1. T. Foguel, On seminormal subgroups, J. Algebra 165(3) (1994), 633-636.
- 2. O. H. Kegel, Produkte nilpotenter gruppen, Arch. Math. 12 (1961), 90-93.
- O. Ore, On the application of structure theory to groups, Bull. Amer. Math. Soc. 44 (1938), 801–806.
- 4. D. J. S. Robinson, "A Course in the Theory of Groups," Springer-Verlag, New York, 1982.
- 5. J. J. Rotman, "The Theory of Groups, An Introduction," 3rd ed., Allyn and Bacon, Boston, 1984.
- 6. X. Su, Seminormal subgroups of finite groups, J. Math (Wuhan) 8(1) (1988), 5-10.
- 7. P. Wang, Some sufficient conditions of a nilpotent groups, J. Algebra 148 (1992), 289-295.