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Abstract. In this paper we look at a some results about uniquely covered power associative loops,
and we construct a family of power associative loops that have exactly one covering. This gives shows
that there is a wide variety of power associative loops with exactly one covering than groups.

1. Introduction

A loop L is said to have a covering if it is a set theoretic union of proper subloops.

Definition 1.1. A covering of a loop L is irredundant if each subcollection of those subloops fails
to cover L. A loop is uniquely covered if it has exactly one irredundat covering.

Similar to the group case if a finite power associative loop has a unique covering, then it is covered
by maximal subloops that are cyclic subgroups. But the situation for loops is more complicated than
that for groups. For example a finite group G has exactly one covering by subgroups if and only if G
is isomorphic to Zp×Zp for some prime p, or G is a nonabelian group of order pq for p and q distinct
primes [1]. In this paper we look at a family of power associative loops this loops have exactly one
covering, and some of them are simple. For basic facts about covering of group by subgroups, we
refer the reader to [2], [3].

2. Preliminaries

In this section, we review a few necessary notions from loop theory, and establish some notation
conventions.

A magma (L, ) consists of a set L together with a binary operation on L. For x ∈ L, define the left
(resp., right) translation by x by L(x)y = xy (resp., R(x)y = yx) for all y ∈ L. A magma with all
left and right translations biject is called a quasigroup. A quasigroup L is an idempotent quasigrop
if for any x ∈ L, xx = x. A quasigroup L with a two-sided identity element 1 such that for any
x ∈ L, x1 = 1x = x is called a loop. A loop L is power-associative loop, if for any x ∈ L, the subloop
generated by x is a group. For basic facts about loops and quasigroups, we refer the reader to [4],
[5], [6]. The left, middle, and right nucleus of a loop L are defined, respectively, as

Nucl(L) := {x ∈ L : x(yz) = (xy)z ∀y, z ∈ L},
Nucm(L) := {y ∈ L : x(yz) = (xy)z ∀x, z ∈ L},
Nucr(L) := {z ∈ L : x(yz) = (xy)z ∀x, y ∈ L}.

The nucleus of a loop L is defined as

Nuc(L) := Nucl(L) ∩ Nucm(L) ∩ Nucr(L).

Each of these is an associative subloop of L, as follows from Theorem I.3.5 in [6]. The centrum and
center of a loop L are defined, respectively, by

C(L) := {x ∈ L : xy = yx ∀y ∈ L},
Z(L) := Nuc(L) ∩ C(L).

Given a loop L, a subloop K is said to be normal if, for all x, y ∈ L, x(yK) = (xy)K, xK = Kx,
and (Kx)y = K(xy) ([5], p. 60, IV.1). These three conditions are clearly equivalent to the pair
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x(Ky) = K(xy) and x(Ky) = (xK)y for all x, y ∈ K. Note that the center of a loop is a normal
subloop.

3. Uniquely covered power associative loops

The following three lemmas about covering of finite power associative loops and maximal cyclic
subgroups have straightforward proofs so they are omitted. By maximal cyclic subgroups we mean
cyclic subgroups that are not contained in other cyclic subgroups.

Lemma 3.1. A finite noncyclic power associative loop L has an irredundant covering by maximal
cyclic subgroups.

Lemma 3.2. If L is a uniquely covered finite noncyclic power associative loop, then its covering by
maximal cyclic subgroups is its only irredundat covering.

Lemma 3.3. If L is a finite noncyclic power associative loop with exactly one covering, then every
proper cyclic subgroup of L is a maximal cyclic subgroups.

The proof of the Lemma below is identical to the group theoretical case[1].

Lemma 3.4. Let L be a finite power associative noncyclic loop. L is a uniquely covered if and only
if every maximal cyclic subgroup of L is a maximal subloop of L.

Proof. Assume that L is a uniquely covered and < h > is maximal cyclic but not maximal in L.
Then < h > is properly contained in a proper subloop H which is not cyclic, and L = H∪

⋃
< g >

where g /∈ H and < g > is maximal cyclic, is an irredundat covering contradicting Lemma 3.2.
Assume that every maximal cyclic subgroup of L is a maximal subloop of L,With out loss of

generality L is not cyclic. Then if < g > is maximal cyclic the only proper subloop of L containing
< g > is < g >, thus it is a member of any covering of L. So if {< g1 >, · · · < gn >} is the set of
maximal cyclic subgroups of L, then they are part of any covering of L. And L =

⋃n
i=1 < gi > which

is an irredundat covering, thus L is a uniquely covered. �

4. Family

In this section we construct a family of loops with exactly one covering.

Definition 4.1. Given a (S, +, ·) where (S, +) is a loop with identity 0 and (S − {0} = S∗, ·) is a
quasigroup and an idempotent quasigroup (Q,�) Let L(Q)(S) = {aq(x) : x ∈ S∗ and q ∈ Q} ∪ {1}
(i.e. each element of the form aq(x) in this set is double indexed by q and x) and binary operations
defined as follows:

i. For any l ∈ L(Q)(S), 1l = l1 = l.
ii. For x, y ∈ S∗,

ai(x)ai(y) =

{
ai(x + y) if x + y 6= 0
1 otherwise

iii. For x, y ∈ S∗, aq1(x)aq2(y) = aq1�q2(xy) for q1 6= q2.

We will call Q the basis of L(Q)(S).

Remark 4.2. For convenience we will also denote 1 by aq(0), and thus get aq(x)aq(−x) = aq(0) = 1.

Lemma 4.3. L(Q)(S) is a loop with identity 1.

Proof. By definition 1 is a two sided identity. Given aq1(x)b = aq2(y) if q1 = q2 then the unique
solution is b = aq1(z) where z is the unique solution to z + x = y. If q1 6= q2 there is a unique q3

such that q1� q2 = q3 then the unique solution is b = aq3(t) where t is the unique solution to tx = y.
Similarly we can find unique solutions for baq1(x) = aq2(y), thus L(Q)(S) is a loop. �

Remark 4.4. L(Q)(S) is a union of proper subloops Aq = {aq(x) : x ∈ S}, where q ∈ Q, with
Aq1 ∩ Aq2 = {1} for q1 6= q2.



Remark 4.5. If Q and S are finite, then |L(Q)(S)| = |Q|(|S| − 1) + 1.

Lemma 4.6. If (S, +) is a group, then L(Q)(S) is a power associative loop with identity 1.

Proof. By Lemma 4.3 L(Q)(S) loop with identity 1. Given aq(x) ∈ L(Q)(S),

< aq(x) >≤ Aq = {aq(x) : x ∈ S} ∼= (S, +)

a group. Thus L(Q)(S) is a power associative loop. �

Remark 4.7. In this paper we will look at L(Q)(S) where S = F a field, so Aq is an abelian group.

Remark 4.8. |Q| ≥ 3 since Q is an idempotent quasigroup.

Lemma 4.9. If |F| > 2, then L(Q)(F) is not a group. And if |F| = 2 and |Q| = 3 then it is the Klein
4-group.

Proof. If F = GF (2) and |Q| = 3, then |L(Q)(F)| = 4 and for any x ∈ L(Q)(F), x2 = 1 so L(Q)(F) is
the Klein 4-group. If |F| > 2 then there exists x ∈ F∗ with −x2 6= 1.Let q1, q2 ∈ Q where q1 6= q2,
look at

aq1(−x)(aq1(x)aq2(1)) = aq3(−x2) 6= aq2(1) = (aq1(−x)aq1(x))aq2(1)

not even in the case that q2 = q3 so L(Q)(F) does not have the left inverse property and L(Q)(F) is
not a group. �

Remark 4.10. If Q is finite then every subset of L(Q)(F) with more than 2|Q| elements has a triplet
of elements that commute and generate a group, but Z(L(Q)(F)) is trivial when |F| > 2.

5. Two-quasigroup basis

Definition 5.1. A quasigroup is homogeneous if its automorphism group is transitive. A quasi-
group is doubly homogeneous if its automorphism group is doubly transitive. A two-quasigroup is a
nontrivial two generated doubly homogeneous quasigroup.

Remark 5.2. If Q is a two-quasigroup, then it is generated as a quasigroup by any two distinct
elements.

Lemma 5.3. If p is a prime and n a positive integer, then there is a two-quasigroup |Q| = pn.

Proof. By Theorem 2.5 [7], given Q = GF (pn) (the Galois field of pn elements), and α a primitive
element in GF (pn) . Then (Q,�) is a two-qusigroup under the binary operation

a� b = αa + (1− α)b

for all a, b ∈ Q is a two-quasigroup. �

Remark 5.4. Given a two-quasigroup Q we will denote its elements by {0, 1, . . . }.

Theorem 5.5. If F is a finite field and (Q,�) is a two-quasigroup, then L(Q)(F) =< ai(x), aj(y) >
for any ai(x), aj(y) ∈ L(Q)(F)− {1} such that i 6= j and < x > or < y >= F.

Proof. Let K =< ai(x), aj(y) > since < ai(x) > and < aj(y) >⊆ K we may assume with out loss of
generality that x = 1. Let k = i � j, then ak(1) = ai(y

−1)aj(y) ∈ K. Given q ∈ Q it is a word in i
and k so < aq(1) >⊆ K, thus K = L(Q)(F). �

Corollary 5.6. If F is a field of prime order and (Q,�) is a two-quasigroup, then
L(Q)(F) = < ai(x) , aj(y) > for any ai(x), aj(y) ∈ L(Q)(F)− {1} such that i 6= j.

Theorem 5.7. If F is a finite field and (Q,�) is a two-quasigroup, then L(Q)(F) is uniquely covered.

Proof. By Lemma 3.4 all we need to show is that Aj is a maximal subloop for all j. Assume that C
is a subloop of L(Q)(F) with Aj ( C for some j, then there is a ai(x) ∈ C−{Aj}, so by Theorem 5.5
C = L(Q)(F). �



Corollary 5.8. If F is a field of prime order and (Q,�) is a two-quasigroup, then L(Q)(F) has exactly
one covering by proper subloops.

Lemma 5.9. If F is a field of order 2 and (Q,�) is a two-quasigroup with more than three element,
then L(Q)(F) is not a group.

Proof. By Theorem 5.5 L(Q)(F) =< ai(1), aj(1) > for any i 6= j. Given y ∈ L(Q)(F)−{1}, y = ai(1)
for some i so the order of y is two. Since the order of L(Q)(F) greater than four, L(Q)(F) is not a
group. �

Definition 5.10. A finite loop L satisfies the strong Lagrange property. If whenever K is a subloop
of H which is a subloop of L, then |K| divides |H| (see Definition I.2.15 of [6]).

Lemma 5.11. If F is a field of prime order p and (Q,�) is a two-quasigroup with |F| divides |Q|−1,
then L(Q)(F) has the strong Lagrange property.

Proof. The only subloops of L(Q)(F) are {1}, Ai and L(Q)(F), and |L(Q)(F)| = p|Q|+ (|Q| − 1). �

Theorem 5.12. If F is a field of odd prime order and (Q,�) is a two-quasigroup, then L(Q)(F) is
simple.

Proof. Let {1} 6= K be a normal subloop of L(Q)(F). Since {1} 6= K there exist ai(x) ∈ L(Q)(F)−{1},
such that ai(x) ∈ K, so Ai ⊂ K. With out loss of generality assume i = 0, and let k = 1 � 0.
ak(1) ∈ a1(1)A0 ∩ ak(1)A0, but a1(1)A0 6= ak(1)A0, so by Theorem I.2.16 of [6] A0 6= K, thus there
exist aj(y) ∈ K − A0 and K = L(Q)(F). �

Theorem 5.13. If F is a field of order 2 and (Q,�) is a two-quasigroup with |Q| > 3, then L(Q)(F)
is simple.

Proof. Let {1} 6= K be a normal subloop of L(Q)(F). Since {1} 6= K there exist ai(1) ∈ L(Q)(F)−{1},
such that ai(1) ∈ K, so Ai ⊂ K. Since Q is a two-quasigroup with |Q| > 3, there exists j ∈ Q such
that j � (i� j) 6= i. So look at aj(1)(Aiaj(1)) = Aj�(i�j) while Ai(aj(1)aj(1)) = Ai, thus Ai is not a

normal subloop. Thus there exist aj(1) ∈ K − Ai and K = L(Q)(F). �

The Theorems above show that if F is a field of order 2 and (Q,�) is a two-quasigroup with
|Q| > 3, or if F is a field of odd prime order, then L(Q)(F) is a simple power associative loop with
exactly one covering.

6. The Characteristic zero case

A group with a finite covering by subgroups has a normal subgroup of finite index, also a group in
which every infinite set of pairwise noncommuting elements is finite has a center of finite index [2].
The Theorem and Lemma below shows that this does not hold for power associative loops.

Remark 6.1. If L is a finite power associative loop of order n, then for each a ∈ L, |a| ≤ n, so an! = 1

Theorem 6.2. If F is a field of Characteristic zero, then L(Q)(F) has no normal subloops of finite
index.

Proof. Let K be a normal subloop of L(Q)(F) of finite index. Let n = |L(Q)(F)/K|, given ai(x) ∈
L(Q)(F),

ai(x) = ai(
x

n!
)n! ∈ K,

thus K = L(Q)(F). �

Remark 6.3. If Q is a finite two-quasigroup then every subset of L(Q)(F) with more than 2|Q| elements
has a triplet of elements that commute and generate a group, but Z(L(Q)(F)) is trivial.

Lemma 6.4. If F is a field of Characteristic zero and (Q,�) is a finite quasigroup, then L(Q)(F)
has a finite covering by subgroups.

Proof. {Ai : i ∈ Q} is a finite covering by subgroups. �



7. Loops with a Round-Robin Basis

Robinson [8] introduction the following round-robin hospitality problem: ”Seven golf clubs in
North Canterbury, New Zealand, run an annual round-robin tournament. All seven teams meet at
each of the courses in turn: While the home team sees to the hospitality the remaining six teams
play three matches of the tournament. By [8] the assignment of matches to courses is equivalent to
finding an abelian idempotent quasigroup of order seven.

Definition 7.1. A round-robin quasigroup is an odd order idempotent abelian quasigroup (i.e. a
solution to the round-robin hospitality problem for 2n + 1 clubs).

Definition 7.2. A two-round-robin quasigroup is a round-robin quasigroup that is also a two-
quasigroup.

Theorem 7.3. A two-round-robin quasigroup of order p exist if and only if p is an odd prime with
2 a primitive element in GF (p) the Galois field of p elements.

Proof. Corollary 2.3 and Theorem 2.5 of [7]. �

Lemma 7.4. If F is a field of prime order and (Q,�) is finite two-round-robin quasigroup and
|Q| > 3 or |F| > 2, then L(Q)(F) is an abelian simple loop with exactly one covering by proper
subloops.

Problem 7.5. Are there infinitely many primes p with 2 a primitive element in GF (p) the Galois
field of p elements ( this is a special case of a well known open problem [9])?
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