
Problem 1: Show that every planar graph has a vertex of degree at most 5.

Proof. We will prove this statement by using a proof by contradiction. We will assume that G is
planar and that all vertices of G have degree greater than or equal to 6. We know from Theorem 1
of 1.3 that the sum of the degrees of all verticies of a graph is equal to twice the number of edges.
Since each vertex has a degree of 6 or greater, we obtain

6v ≤ 2e

3v ≤ e (1)

where v is the number of vertices in the graph and e is the number of edges. If G is planar, then
it must satisfy the Corollary of Euler’s Formula. Thus, the following must be true:

e ≤ 3v − 6 (2)

From (1) and (2) we get

3v ≤ e ≤ 3v − 6 (3)

The inequality (3) is impossible since 3v > 3v − 6. Therefore, we have reached a contradiction to
our assumption that all vertices of G have degree greater than or equal to 6. Hence, we conclude
if a graph G is planar, then G has a vertex of degree at most 5.

Problem 2: Show that an n-vertex graph cannot be bipartite graph if it has more than 1
4n2 edges.

Proof. We will prove that if a graph G is bipartite then it cannot have more than 1
4n2 edges. We

will prove this by contradiction; therefore, we will assume that G is bipartite and that G has more
than 1

4n2 edges.
Let m be the number of verticies on one side of the bipartite graph G; thus n −m is the number
of verticies on the other side. The number of edges in the complete Km,n−m bipartite graph is
m(n−m). Hence, the number of edges in G is less than or equal to m(n−m), i.e.

e ≤ m(n−m) = mn−m2 (4)

where n is a fixed integer and e is the number of edges in the graph G. Let f : R→ R be a function
defined by f(x) = x(n − x). The restriction of this function over the positive integers will give as
the quantity m(n −m). We can find the maximum of the function f(x) = xn − x2, x ∈ R, using
the first and second derivatives.

f ′(x) = n− 2x

f ′′(x) = −2

By setting f ′(x) = 0, we obtain x = n
2 , and since f ′′(x) < 0 we know that f has a maximum at

x = n
2 . We can now calculate the maximum value of f(x).
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By using equation(4) we obtain

e ≤ mn−m2 ≤ 1
4
n2 (5)

Our assumption that G has more than 1
4n2 edges is in contradiction with (5). Hence, we have now

proven that an n-vertex graph cannot be bipartite if it has more than 1
4n2 edges.

Problem 3: Show that a planar graph G with 8 verticies and 13 edges cannot be 2-colored.

Proof. Let G be a planar graph G with v = 8 vertices and e = 13 edges and G can be 2-colored.
Since G can be 2-colered, then G does not have a circuit of length 3. Using Problem 6 from Test
1, G must satisfy the following inequality e ≤ 2v − 4. But

e ≤ 2v − 4 (6)
13 ≤ 2(8)− 4
13 ≤ 12

We have reached a contradiction. Thus G cannot be 2-colored.

Problem 4: Suppose a tree T has an even number of edges. Show that at least one vertex of T
must have even degree.

Proof. We will prove this statement by using a proof by contradiction. We will assume that a tree
T has an even number of edges and that all verticies of T have odd degree. Let e be the number of
edges of T and v be the number of vertices of T . By Theorem 2 in Section 3.1, e = v − 1. Since e
is an even number, then v must be odd. Hence T has odd number of vertices of odd degree which
contradicts the Corollary on page 23. (In any graph, the number of vertices of odd degree is even.)
Therefore T has at least one vertex of even degree.

Problem 5: Show that a graph is connected if and only if it has a spanning tree.

Proof. We will prove that if a graph G is connected, then it has a spanning tree. We will assume
that a graph is connected. We know that for a graph to be connected, there must exist a path from
any vertex a to any vertex b. We will remove an edge from G until we have no circuits without
disconnecting the graph. The end product will therefore be a spanning tree. We have now proven
that if G is connected then it has a spanning tree.

We will now prove the opposite direction of the biconditional statement. We will prove that if
a graph G has a spanning tree, then G is a connected graph. Let T be a spanning tree for G. Then
T is connected and contains all vertices of G. Therefore G is connected.
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Problem 6: How many positive integers less than 1,000,000 are there with distinct digits and
divisible by 5?

Solution: We will determine how many positive integers there are with distinct digits that are less
than 1,000,000 and divisible by 5. Let us consider six cases where the number has 1, 2, 3, 4, 5, or
6 digits.

• Case 1: The number has 1 digit. There is only one possible integer with 1 digit that is
divisible by 5, which is 5.

• Case 2: 2 digits. If the number ends with a 0 there are 9 possible digits for the first digit
(1-9). If the number ends with a 5 there are 8 possibilities for the first number (1-9 except
5). Thus, we obtain that there are (9 ∗ 1) + (8 ∗ 1) = 17 integers with 2 distinct digits that
are divisible by 5.

• Case 3: 3 digits. If the number ends with a 0 there are 9 possible digits for the first digit and
8 possibilities for the second. If it ends with a 5 there are 8 possibilities for the first and also
8 for the second. Therefore, there are (9 ∗ 8 ∗ 1) + (8 ∗ 8 ∗ 1) = 136 distinct numbers.

• Case 4: 4 digits. Following the same pattern, we’ll obtain 9 ∗ 8 ∗ 7 ∗ 1 possible integers if the
number ends with a 0 and 8 ∗ 8 ∗ 7 ∗ 1 if it ends with a 5. Adding the products gives us 952.

• Case 5: 5 digits. If the integer ends in a 0, we have 9∗8∗7∗6∗1 possible values and if it ends
with a 5 we have 8 ∗ 8 ∗ 7 ∗ 6 ∗ 1 possible values. We obtain 5712 by adding the two products.

• Case 6: 6 digits. By continuing the same logic, we obtain (9∗8∗7∗6∗5∗1)+(8∗8∗7∗6∗5∗1) =
28560 distinct six digit numbers that are divisible by 5.

We can add up the six disjoint cases to obtain a total of 1 + 17 + 136 + 952 + 5712 + 28560 = 35378
integers divisible by 5 that contain distinct digits and are divisible by 5.

Problem 7: A secretary works in a building located m blocks east and n blocks north of his home.
Every day he walks m + n blocks to work. How many different routes are possible for him? (All
streets are either parallel or perpendicular to each other.)

Solution: Since we know that the secretary walks m + n blocks each day, we know that he must
take m blocks going east, and n blocks going north. He will never go west or south. Thus, we can
categorize each “block” that the man walks in two ways: north (N) and east (E). Then each route
corresponds to a sequence of m Es and n Ns. Thus the total number of routes is P (m + n, m, n),
permutations with repetitions, since E is repeated m times and N is repeated n times. This number
is the same as C(m + n, m) = C(m + n, n) because

C(m + n, m) =
(m + n)!

((m + n)−m)! ·m!
= C(m + n, n) = P (m + n, m, n)

Problem 8: How many solutions are there to the equation

x1 + x2 + x3 + x4 = 29

where x1, x2, x3, and x4 are integers such that x1 ≥ 0, x2 > 3, x3 ≥ 2, and 1 ≤ x4 < 4.
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Solution: We can rewrite the ranges for the variables in the following form:

0 ≤ x1

4 ≤ x2

2 ≤ x3

1 ≤ x4 ≤ 3

Let y1 = x1, y2 = x2 − 4, y3 = x3 − 2, and y4 = x4 − 1. With this, we will obtain the following:

y1 + (y2 + 4) + (y3 + 2) + (y4 + 1) = 29
y1 + y2 + y3 + y4 = 22

Where y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, and 0 ≤ y4 ≤ 2. Let us consider 3 cases where y4 = 0, y4 = 1, and
y4 = 2.

• Case 1 (y4 = 0): The equation is now y1 + y2 + y3 = 22. None of the variables can exceed
22 nor fall under 0. We can use combinations to solve this problem, where we must choose
22 objects from 3 types of objects. C(22 + 3− 1, 22) gives us the number of combinations for
the sum of y1, y2, and y3 to equal 22.

• Case 2 (y4 = 1): The equation is y1 + y2 + y3 = 21. Using the same logic from case (1), we
obtain C(21 + 3− 1, 21) possible solutions for y1, y2, and y3.

• Case 3 (y4 = 2): The equation is y1 + y2 + y3 = 20. There are obtain C(20 + 3 − 1, 20)
possible solutions for the sum of y1, y2, and y3 to return 20.

Adding the three disjoint cases will give us the total number of solutions for y1 + y2 + y3 + y4 = 22
such that each y1, y2, y3, y4 ≥ 0. The same number of solutions will apply when we substitute to
obtain x1 + x2 + x3 + x4 = 29 such that x1 ≥ 0, x2 > 3, x3 ≥ 2, and 1 ≤ x4 < 4.

C(24, 22) + C(23, 21) + C(22, 20) =
24!

2! · 22!
+

23!
2! · 21!

+
22!

2! · 20!

Problem 9: How many one-to-one functions are there from a set with m elements to a set with n
elements? (A function f : A → B is said to be one-to-one, or injective, if and only if f(a) = f(b)
implies that a = b for all a, b ∈ A.)

Solution: Let A = {a1, a2, . . . , am} be the domain and B = {b1, b2, . . . , bn} be the codomain of f .
We will consider the cases where m ≤ n and m > n.

• Case 1 (m ≤ n): Since any two distinct elements in A must have distinct images in B, and
|B| = n, we know that there are n possible images for a1 ∈ A, n − 1 possible images for
a2 ∈ A, and so on, and n−m + 1 possible images for am ∈ A. Therefore, the total number of
one-to-one functions from a set A where |A| = m to a set B where |B| = n is the following:

(n) · (n− 1) · . . . · (n−m + 1) =
n!

(n−m)!
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• Case 2 (m > n): Like Case 1, any two distinct elements in A must be mapped to distinct
elements in B. Since |A| > |B|, a1 will have n possible images, a2 will have n−1 possibilities,
down to an which will have 1 possible image because the elements a1, a2, . . . , an−1 already
are mapped to n− 1 elements in B, leaving 1 remaining out of the n elements in B. Because
m > n, there exists an+1 ∈ A; however, there are no remaining elements in B, so there are 0
possible images for an+1. Therefore, there are 0 one-to-one functions when m > n.

Problem 10: How many onto functions are there from a set with 8 elements to a set with 4
elements? (A function f : A→ B is called onto, or surjective, if and only if for every element b ∈ B
there is an element a ∈ A with f(a) = b.)

Solution: We will let the domain be the set A, and |A| = 8. Let the codomain be the set B =
{b1, b2, b3, b4}. We will define sets of functions such that Bi = {f : A→ B | (∀x ∈ A)f(x) 6= bi}.

B1 = {f : A→ B | (∀x ∈ A) f(x) 6= b1}
B2 = {f : A→ B | (∀x ∈ A) f(x) 6= b2}
B3 = {f : A→ B | (∀x ∈ A) f(x) 6= b3}
B4 = {f : A→ B | (∀x ∈ A) f(x) 6= b4}

The union B1 ∪B2 ∪B3 ∪B4 represents a set of functions where
f : A→ B | ((∀x ∈ A) f(x) 6= b1) or

((∀x ∈ A) f(x) 6= b2) or
((∀x ∈ A) f(x) 6= b3) or
((∀x ∈ A) f(x) 6= b4)

 .

We want to find the size of this union because its complement (B1 ∪B2 ∪B3 ∪B4) is the set
f : A→ B | ((∃x ∈ A) f(x) = b1) and

((∃x ∈ A) f(x) = b2) and
((∃x ∈ A) f(x) = b3) and
((∃x ∈ A) f(x) = b4)


which is, consequently, the number of onto functions of f : A → B. We first need to find |B1 ∪
B2 ∪B3 ∪B4| to find the number of elements in its complement.

|B1 ∪B2 ∪B3 ∪B4| = (|B1|+ |B2|+ |B3|+ |B4|)− (|B1 ∩B2|+ |B1 ∩
B3|+ |B1∩B4|+ |B2∩B3|+ |B2∩B4|+ |B3∩
B4|) + (|B1∩B2∩B3|+ |B1∩B2∩B4|+ |B1∩
B3∩B4|+ |B2∩B3∩B4|)−|B1∩B2∩B3∩B4|

= (38 · 4)− (28 · 6) + (18 · 9)− 0
= 24711

Finally, 48 is the total number of functions of f : A→ B since each of the 4 elements in A can map
to any of 8 elements in B. Therefore, we can find the number of onto functions in the graph with
the following equation:

|B1 ∪B2 ∪B3 ∪B4| = 48 − |B1 ∪B2 ∪B3 ∪B4|
= 48 − 24712
= 40824
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