Zigbee Tracking System Senior Project

Presented by

Outline of Presentation

- Idea Inspiration
- Background
- Project Goals
- What We've Done

- Hardware
- Software
- Testing/Results
- Future Consideration
- Questions

Original Inspiration Carolina Village A Hall 101-115 C Hall 130-144 CLUSTER 1 CLUS (15 Beds) (15] MAINENTRANCE DRIVE UNDER 0 0 CENTRAL CORE CLUSTER 2 CLUS (14 Beds) (14 **B** Hall D Hall 116-129 145-158

MAIN FLOOR

-Design a RF Tracking System

Tracking of potential patients, staff, or equipment

Communication Methods

Store Data for Reporting

• User-Interface

Tracking System?

Unique hardware IDs will be assigned & programmed to each device.

- Allows monitoring for individual data
- Personalized Alerts
- Custom reporting

- How?

Why?

• Utilizing Zigbee to handle the routing of unique device IDs

<u>Data Storage</u>

Advantages

- Tracks working habits of personnel
 - Performance Reviews
 - Alleviate family concerns
 - Ensures people are where they should be when they should be there
- Tracks incidents
 - People continually accessing unauthorized areas
 - Helps diagnose behavioral deviation in people

• How?

- Data will be stored locally on PC.
- Distribution, access and encryption of stored data goes beyond the scope of this project.

	Task Name	Duration	Start	Finish	Predecessors	R	ε 🗋	Dec	'07		Ja	n '08		Feb	'08		Mar	[,] '08		Ap)r '08		M	ay '08	3
							23	5 2	9 16	23	30	6 13	20 27	3	10	17 24	2	9 '	16 23	30	6 1:	3 20	27	4 11	1
1	Ultrasonic decision	28 days?	Wed 11/28/07	Fri 1/4/08				-			Þ	1													
2	Switch to Zigbee	1 day?	Mon 1 <i>/7/</i> 08	Mon 1/7/08	1							í													
3	Evaluate Freescale Zigbee hardware	48 days?	Thu 1/31/08	Mon 4/7/08	2																				
4	Evalaute Freescale software	48 days?	Thu 1/31/08	Mon 4/7/08	2												:			-	h -				
5	Switch to Digi Xbee products	1 day?	Tue 4/8/08	Tue 4/8/08	4																ĥ.				
6	Learn Xbee hardware/software	6 days?	Wed 4/9/08	Wed 4/16/08	5																4				
7	Prototype Xbee hardware setup	13 days?	Mon 4/14/08	Wed 4/30/08	5																- t		h		
8	Write microcontroller software	18 days?	Mon 4/7/08	Wed 4/30/08																					
9	Test setup	18 days?	Mon 4/7/08	Wed 4/30/08																					
10	Create presentation	36 days?	Wed 3/12/08	Wed 4/30/08																					
11	Final Report	5 days?	Thu 5/1/08	Wed 5/7/08	7,8,10,9																		Ľ		
																			1255						

Project Goals

Setup a wireless mesh/star topology network with Zigbee enabled devices.

 Demonstrate working communications between end points, routers, and coordinating station.

Show data updated and stored in real-time

What We've Done

Evaluated Zigbee development kit provided by Freescale

 Issues with fully accessing the development software (BeeKit and Codewarrior) led us to switch to hardware from Digi International

 Using Digi's Xbee hardware we have setup a network with end devices, two routers and a coordinating station.

What We've Done Cont.

Utilized PIC microcontrollers on the routers and end devices to automatically send special modem commands over a RS-232 serial connection to the Xbee radio chips.

 Programmed a packet parsing program in LabVIEW to receive and store the data from the coordinating station.

Xbee Radio Chips

- Digi International
- Operates on ISM 2.4GHz
 - Two versions

•

- Pro: 100mW TX power, 270mA TX current
- Regular: 1mW TX power, 45mA TX current

• <10µA Power down current</p>

RegularProIndoor100 ft300 ftOutdoor300 ft1 mile

Xbee S2 Development Kit

- Onboard Microcontroller
- RS-232 or USB connection
- 20 pin connector for Xbee radio chip

Hardware Cont.

Xbee S2 development Board

 Block diagram for the communications between Xbee radio and onboard microcontroller.

Microchip PIC16F877A

Attached to serial versions of Xbee boards via RS-232

Sends AT modem commands via the serial connection to radio in order to access embedded functions.

RS-232 to Xbee

<u>Router Hardware</u>

 Router 2 hardware setup with PIC development board attached via the RS-232

CCS Compiler

C compiler for Microchip PIC16F877A microcontrollers.

Proprietary software by Digi.

Easily configure and program Xbee products.

 Includes a terminal to show communication (PIC).

X-CTU Cont.

PR X-C	ти [сом11]	
PC Setti	tings Range Test Terminal Modem Configuration	
Line St	Assert Close Assemble Clea CD DSR DTR ♥ RTS ♥ Break □ Com Port Packet Screet	r Show n Hex
132D2 atnd 5004 0013A 400A4	Z+++OK A200 4A48	
FFFE 01		
00 C105 101E		
1533 00134 40527	A200 7899	2
FFFE 01 00 C105		Ę
101E 3EF7 00134	A200	
FFFE 01	610	5
00 C105		<u> </u>
COM11	9600 8-N-1 FLOW:NONE Rx: 150 bytes	

Graphical programming language that is commonly used for automation, controls, and instrumentation.

 Parses serial data coming from the USB port on the coordinating station to the PC.

 Writes date/time, end point ID and Received Signal Strength to Excel.

 Basic user interface to show room number that the end device is located in.

LabVIEW Program

LabVIEW User Interface

📴 Serial in.vi			
File Edit View Project Operate	<u>T</u> ools <u>W</u> indow <u>H</u> elp		S Open
stop	Serial Settings:Number	of Bytes at Serial Port	
resource name 2	0 return count		
Router	Room 1 Room 2	R55 R1	
	Error	RSS R2	
RSS SB			
<			>

<u>Data Storage in Excel</u>

Microsoft Excel - test.xls											
	<u>Eile E</u> dil	t <u>V</u> iew	Insert	F <u>o</u> rm	iat <u>T</u> oo	ls <u>D</u> ata	<u>W</u> ine				
	🞽 🔒	🔒 🔒 I	a 🗳	ABC	🕰 👗		- 🛷				
	F19	-	f≈								
	,	д	E	3	C		D				
1	4/28/2	008 10:5	57	2	A		33				
2	4/28/2	008 10:5	58	2	А		32				
3	4/28/2	008 10:5	58	1	A		32				
4	4/28/2	008 10: 5	58	2	A		32				
5	4/28/2	008 10:5	58	1	A		33				
6	4/28/2	008 10: 5	58	1	A		33				
7	4/28/2	008 10:5	58	1	А		19				
8	4/28/2	008 10:5	58	2	A		32				
9	4/28/2	008 10:5	58	1	A	1A	·				
10	4/28/2	008 11:1	17	2	A		32				
11	4/28/2	008 11:1	17	2	А		32				
12	4/28/2	008 11:1	17	2	A		32				
13	4/28/2	008 11:1	17	1	А	1B					
14	4/28/2	008 11:1	17	2	A		33				
15	4/28/2	008 11:1	17	1	А	1B					
16	4/28/2	008 11:1	18	1	А	1B					
17	4/28/2	008 11:1	18	2	A		32				
18	4/28/2	008 11:1	18	2	А		32				
19	4/28/2	008 11:1	18	2	А		32				
20	4/28/2	008 11:1	18	1	А	1B					

<u>Xbee Modem Commands</u>

Xbee supports AT and API modem commands to change configuration through terminal programs like the X-CTU software or with HyperTerminal.

Examples are:

- +++: Enter command mode
- DB: Transmit receive signal strength
- DH: Change destination high address
- DL: Change destination low address
- CN: Exit command mode

Testing/Results

Connected an Oscilloscope to the RS-232 pins to see received signal

 This picture is a end point transmitting an 'A' to Router 1

Battery Life

Battery Life information to be added

Future Considerations

- Create a graphical user interface to show end points in real time.
- Create dynamic alerts to be applied in the graphical user interface which can be modified by a user.
- Move to a database linked to the GUI instead of Excel.
- Expand the node density by creating an addressing scheme.
- Utilize ATND command with string comparison in C for further automation of network growth.
- Develop custom circuit boards to reduce size or use XBee onboard microcontroller.

