Chapter 7

Digital Arithmetic and
Arithmetic Circuits

ECET 331 - Digital Integrated Circiuts

Basic Digital Arithmetic
C |

e Signed binary number

® A binary number of fixed length whose sign (+/-) is
represented by one bit (usually MSB) and its magnitude
by the remaining bits

e Unsigned binary number

® A binary number of fixed length whose sign is not
specified by a bit
® All bits are magnitude and the sign is assumed +

ECET 331 - Digital Integrated Circuits

Unsigned Binary Arithmetic
C |

e Sum

® Result of an addition operation of two (or more) binary
numbers (operands)
e Augend
e Addend

e Carry
® A digit (or bit) that is carried over to the next most
significant bit during an N-bit addition operation

® The carry bit is a 1 if the result was too large to be
expressed in N bits

ECET 331 - Digital Integrated Circuits

Basic Rules (Unsigned)
C |

e One bit unsigned addition

Cin A B Sum Cout
0O0+0= 0 0
oO+1= 1 0
1+1= 0 1

1+1+1= 1 1

ECET 331 - Digital Integrated Circuits

Binary Addition (example 1)
e

10010
+ 1010
11100

ECET 331 - Digital Integrated Circuits

Binary Addition (example 2)
C |

1 11111
10101110
+ 10010011
101000001

ECET 331 - Digital Integrated Circuits

Basic Subtraction

G
e X=A-B
® A =minuend
® B = subtrahend
® X = difference or result
® Requires a borrow bitif A<B

e Other forms of subtraction exist

® 2's complement addition (used in
microprocessors)

ECET 331 - Digital Integrated Circuits

Basic Subtraction Rules
. |

e One bit unsigned subtraction

Borrow A B Diff
0-0=0
1-0= 1
1-1=0

1 0-1= 1 (2 - 1p = 1)

ECET 331 - Digital Integrated Circuits

Binary Subtraction (example 1)
C |

1110 110(10) Borrow Stage
- 1001 - 100 1
? 010 1
(14 - 9 = 5)

ECET 331 - Digital Integrated Circuits

Binary Subtraction (example 2)
C |

10000 0111(10) Borrow ripples to LSB
- 101 - 10 1
? 101 1

(16 — 5 = 11)

ECET 331 - Digital Integrated Circuits

Signed Binary Numbers
G
e Sign bit

® A bit (usually the MSB) that indicates whether
anumber is positive(=0) or negative (=1)

e Magnitude Bits

® The bits of a signed binary number that tell
how large it is in value

ECET 331 - Digital Integrated Circuits

Note:
Positive numbers are the
same in all three forms

Signed Binary Numbers
L |

e True Magnitude Form

® A form of signed binary whose magnitude bits are the
TRUE binary form (not complements)

e 1's Complement

® A form of signed binary in which negative numbers are
created by complementing all bits

e 2's Complement
® A form of signed binary number in which the negative
numbers are created by complementing all the bits and
adding a1 (1's Complement + 1)

ECET 331 - Digital Integrated Circuits

True Magnitude Form

e —
e MSB is the sign bit (Negative: S = 1)
® Other bits are the magnitude

® 5-bit number examples:

+25,, = 011001
-25,, = 111001 (Same as +25 with S=1)

+12,, = 001100
-12,, = 101100 (Same as +12 with S=1)

ECET 331 - Digital Integrated Circuits

1's Complement Form

A form of binary number in
which negative numbers are
generated by complementing

1’S Complement Form all bits of a number including

the sign bit

R —
e MSB is the sign bit (Negative: S =1)
® Other bits are the magnitude

® 8-bit number examples:

+57,, = 00111001
-57,, = 11000110 (All bits inverted)

+72,, = 01001000
-72,, = 10110111 (All bits inverted)

ECET 331 - Digital Integrated Circuits

2's Complement Form

A form of binary number in
which negative numbers are
generated adding 1 to the 1's

2’S Complement Form complement form of the

number

C—
e Used in pP arithmetic
+57 = 00111001
e A negative number in -57 = 11000110 (1"s comp)
2's complement form R
can be made positive 11000111 (27s comp)
by 2's complementing
itagain +72 = 01001000
-72 = 10110111 (1’s comp)
+ 1
10111000 (2°s comp)

ECET 331 - Digital Integrated Circuits

Signed Binary Addition
C |

e Donein the same way

as unsigned addition e Positive: Sign =0
except...
® Both operands must +30: 00011110

have the same number R
of magnitude bits +75: M

® Both operands must +105: 01101001
have a sign bit

ECET 331 - Digital Integrated Circuits

Signed Binary Subtraction

G
e Using complement notation, we can add a
negative number rather than subtracting a
positive number
® Same circuitry for both operations

® This does not work for true magnitude
numbers

ECET 331 - Digital Integrated Circuits

1's Complement Subtraction
|

e Addthel’s
+80,, = 01010000
complement and +65,0 = 01000001
then add any -65,, = 10111110 (1”s comp)
carry
80 01010000
-65 + 10111110
1 00001110
+ 1 (End around carry)
+15 00001111

ECET 331 - Digital Integrated Circuits

2's Complement Subtraction
(|

e Addthe2's
| tto +80y, = 01010000
complemen +65,, = 01000001
the minuend -65,, = 10111110 (1’s complement)

+ 1
-65,, = 10111111 (2°s complement)
e If acarry results,
discard it
80 01010000
-65 + 10111111
+15 1 00001111 (Discard the carry)

ECET 331 - Digital Integrated Circuits

Negative Sum or Difference
.

e |f True Magnitude Form is used for
subtraction, results will be incorrect

e |f the results from a 1's complement or 2's
complement is negative (S=1), the
magnitude is found by taking the
complement of the result

ECET 331 - Digital Integrated Circuits

Negative Sum or Difference
C |

+65: 0100 0001
-80: + 1011 0000 (2°s C.)
1111 0001 (Negative sum)
0000 1110 (Invert)
+ 1 (Add 1)
0000 1111 (Final Answer: 15, negative)

ECET 331 - Digital Integrated Circuits

Range of Signed Numbers
C |

e Range of positive numbers is 0to 2N -1 for an N-
bit magnitude

e Range of negative numbers is -1 to -2N for an N-
bit magnitude

e Example: 8-bit range (i.e. 7-bit magnitude)
(-27<x<27-1) or (-128<x<127)

ECET 331 - Digital Integrated Circuits

Exercise
¢]

e Write -16,, as an 8-bit
2's complement
number

+16 = 00010000
-16 = 11101111 (1°S C.)
+ 1 (Add 1)
11110000 (2°s C.)

ECET 331 - Digital Integrated Circuits

Sign Bit Overflow
e

e Overflow

® A erroneous carry into the sign bit of a signed
binary number that results from a sum or
difference that is larger than can be
represented by the magnitude bits

e Results in a false positive or a false
negative number

ECET 331 - Digital Integrated Circuits

False Negative Overflow
(|

e 8-bit addition

- +75: 01001011
e Two positive +96: + 01000001

numbers added 10101011 (negative - False)
with a result

greater than +127

for 8-bit numbers

causes an

overflow

ECET 331 - Digital Integrated Circuits

False Positive Overflow
. |

e Addition of two 8-bit
negative numbers

-80: 10110000 (2°s C.)

e Two positive -65: + 10111111 (2°s C.)
numbers added with 01101111 (positive - False)
aresult greater than
+127 for 8-bit
numbers causes an A sum of 2 positive numbers is always
overflow positive. A sum of 2 negative numbers

is always negative. Any 2's complement

arithmetic which contradicts this has
produced an overflow in the sign bit.

ECET 331 - Digital Integrated Circuits

Hexadecimal Addition
¢]

e Similar to decimal addition with additional digits

A-F
F+1=10
F+F=1E
F+F+1=1F

e Easier than working with large binary numbers

ECET 331 - Digital Integrated Circuits

BCD Codes
¢]

e Binary Coded Decimal

® A code used to represent each decimal digit of
anumber by a 4-bit binary value

® valid Digits for 0-9 are (0000 to 1001) the
binary codes 1010 to 1111 are invalid

® Called an 8421 Code due to the decimal
weight of each bit position

ECET 331 - Digital Integrated Circuits

BCD (examples)
e

4987,,
844,

0100 1001 1000 0111 (BCD)
1000 0100 (BCD)

Each digit is a 4 Bit Binary group

ECET 331 - Digital Integrated Circuits

Gray Code
G

e A binary code that Decimal True Binary Gray Code
progresses such thatonly -1 T

one bit changes between 0 o000 o000
two successive codes H 0010 0011

3 0011 0010

4 0100 0110

e Generated as 5 0101 0111
- 6 0110 0101
g3=b3 7 0111 0100

g2 =hb3xor b2 8 1000 1100

- 9 1001 1101
gl=b2xor bl 10 1010 1111

g0 = b1 xor b0 11 1011 1110

12 1100 1010

. 13 1101 1011

e Very useful in hardware 14 1110 1001
design 15 1111 1000

ECET 331 - Digital Integrated Circuits

ASCI| Code
. |

e American Standard Code for Information
Interchange

e A seven bit alphanumeric code used to represent
text letters, numerals, punctuation, and special
controls

e An expanded 8 bit form is often used also
® Allows for some graphical characters

ECET 331 - Digital Integrated Circuits

Binary Adders
.

e Half Adder(HA): A circuit that will add two
bits and produce a sum and carry result

e Full Adder(FA): A circuit that will add a
carry bit from another HA or FA (previous
stage) and two operand bits to produce a
sum and carry result

ECET 331 - Digital Integrated Circuits

Basic HA Addition
¢]

e One bit addition rules
® Three possible combinations

0+0=00

0+1=01
1+1=10

ECET 331 - Digital Integrated Circuits

HA Circuit
¢]

e Basic Equations
(S =Sum, C = Carry)

HA Circuit and Symbol
e

A—
D -
—1 B Cour

ECET 331 - Digital Integrated Circuits

A B c S
® S=AxorB ============
® C=AandB 0 0 0 0
0 1 0 1
10 0 1
11 10
ECET 331 - Digital Integrated Circuits
Full Adder

G

—A s

— B
— S~ Cout —

ECET 331 - Digital Integrated Circuits

Full Adder
. |

e Adds aCin to the HA

A B Cin Cout Sum
e Basic Equations:
0O 0 O o o0
Cout = (A xor B)Cin + AB 0O 0 1 0 1
010 0 1
S = (A xor B) xor Cin 0 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

ECET 331 - Digital Integrated Circuits

FA Circuit

$=(A®3) &0y

(A®B)Cy

On Cour

=(A©B)Cyy +AB

ECET 331 - Digital Integrated Circuits

FA Circuit (Using HAS)
C |

A xor B

Parallel (N-bit) Binary Adder

FA FA FA
Al A2 AN
A S —A S — A S
B1 s
Bilg W B2l BN fg
L Cin Cout Cin Cout — | Cin Cout

LSB { MSB

S1 S2 SN Cout

ECET 331 - Digital Integrated Circuits

Al sp———— Sum
HA HA
B—B Cout B Cout
AB
-
Cin
ECET 331 - Digital Integrated Circuits
Ripple Carry

. |
e In the N-Bit Parallel Adder (FA Stages) the
Cour is generated by the last stage (FAy)

e This is called a Ripple Carry Adder
because the final Cyr (Last Stage) is
based on aripple through each stage by
C, at the LSB Stage

ECET 331 - Digital Integrated Circuits

Ripple Carry
C |

Text: figure 7.11

ECET 331 - Digital Integrated Circuits

Ripple Carry
C |

e Each Stage will have a propagation delay on the
C to Coyr of one AND gate and one OR gate

e A 4-Bitripple carry adder will then have a
propagation delay on the final Co ;0f 4 X2=8
gates

e A 32 Bit adder such as in apP in a PC could have
a delay of 64 Gates

ECET 331 - Digital Integrated Circuits

Fast Carry (or Look-Ahead Carry)
.

e A combinational network that generates
the final Coy directly from the operand
bits (A, to Ay, B, to By)

e |tis independent of the operations of each
FA Stage (unlike the ripple carry)

ECET 331 - Digital Integrated Circuits

Fast (Look-Ahead) Carry
C |

e Has a small propagation delay compared
to the ripple carry

e Delay is 3 gates for a 4-bit adder
compared to 8 for the ripple carry

ECET 331 - Digital Integrated Circuits

Subtractor (2's Complement)
C |

e Subtraction using 2's complement
addition allows use of parallel FAs

e The subtract operation involves adding
the inverse of the subtrahend to the
minuend and then add a 1

ECET 331 - Digital Integrated Circuits

Subtraction (2's Complement)
G

e Difference=A-B=A+!B+1

e This operation can be done in a parallel N-Bit FA
by Inverting B, through By and connecting C, at
the LSB Stage to +5V (adding 1)

e The circuit can be modified to allow either the
ADD or SUBTRACT operation to be performed

ECET 331 - Digital Integrated Circuits

XOR as Programmable Inverter

XOR as a Programmable Inverter — (See Text pp.381-382)

ECET 331 - Digital Integrated Circuits

Adder / Subtractor

G
e See Dueck for Figure 7.15

ECET 331 - Digital Integrated Circuits

BCD Adder (1)
C |

e A parallel adder whose output sum is in groups
of 4 bits each representing a BCD (8421) digit

e Basic design is a 4-bit binary parallel adder to
generate a 4-bit sum of A+ B

e Sum is input to the four bit input of a B, to BCD
code converter

ECET 331 - Digital Integrated Circuits

BCD Adder (2)
C |

e Standard binary adder
with a code converter

‘ 0o ‘ e If the sum is greater

than 9, add 6 to
[w » = = convert to BCD

e Greater than 9if X1
and X3 or X2

ECET 331 - Digital Integrated Circuits

BCD Code Converter
¢]

e Code converter design is based on the 4-bit
adder used with Table 7.11 in the text

e The complete design is shown in Fig. 7.26

e The A, inputs of the code converter adder are
fixed to be either a 0000 (C =0) or 0110 (C=1). The
0110 corrects binary overflow to BCD

ECET 331 - Digital Integrated Circuits

Entity Example
C |

2-to-4 decoder

ENTITY decodel 1S
PORT(D1,D0 : IN BIT;
Y0,Y1,Y2,Y3 : OUT BIT);
END decodel;

ECET 331 - Digital Integrated Circuits

Architecture Example
|

ARCHITECTURE behavioral OF decodel IS
BEGIN

Y0 <= (not D1) and (not DO);

Y1l <= (not D1) and (DO);

Y2 <= (D1) and (not DO);

Y3 <= (D1) and (DO);
END decoder;

ECET 331 - Digital Integrated Circuits

Another Entity Format
e

ENTITY decodel 1S
PORT(D : IN STD_LOGIC_VECTOR(1 downto 0);
Y : OUT STD_LOGIC_VECTOR(3 downto 0));
END decodel;

ECET 331 - Digital Integrated Circuits

Another Entity Format
G

e This format groups signals of similar
purpose
e into a bus (or vector)

e Instead of D1, DO we use D(1 downto 0)
e Instead of Y3, Y2, Y1, YO,
we use Y(3 downto 0)

ECET 331 - Digital Integrated Circuits

Selected Signal Assignments
C |

e Uses a VHDL construct called
WITH SELECT

e Basic Format
WITH (my_vector) SELECT

e The selected signal state us used to
determine the output changes

ECET 331 - Digital Integrated Circuits

Architecture Using Selected Signal
Assignment

. |
ARCHITECTURE behavioral OF decodel IS
BEGIN
WITH (D) SELECT
Y <= “0001” WHEN *“00”,
“0010” WHEN “01~,
“0100" WHEN “107,
“1000” WHEN “11”,
“0000” WHEN OTHERS;

END decoder;
ECET 331 - Digital Integrated Circuits

Seven Segment Decoder Entity
G

ENTITY bcd_7seg 1S
PORT(d3, d2, di, dO : IN BIT;
a,b,c,d,e,f,g : OUT BIT);
END bcd_7seg;
-- Defines binary inputs dO to d3
-- Defines SS outputs a to g

ECET 331 - Digital Integrated Circuits

Seven Segment
Decoder (CA) Architecture

ARCHITECTURE seven_segment OF bcd_7seg 1S
SIGNAL input : BIT_VECTOR(3 downto 0);
SIGNAL output : BIT_VECTOR(6 downto 0);

BEGIN
input <= D3 & D2 & D1 & DO

-- Uses two intermediate signals called
-- input and output (internal no pins)
-- Creates an array by using the concatenate
-- operator (&) In this case input(3) <= D3,

-- input(2) <= D2 etc.
ECET 331 - Digital Integrated Circuits

10

SS (CA) Architecture Internal States
G

WITH input SELECT
output <= “0000001” WHEN “0000”,
output <= “1001111” WHEN *“0001”,
output <= 0010010 WHEN *“0010”,
output <= ““0000110” WHEN *“0011~,
output <= “1001100” WHEN *“0100”,
output <= “0100100” WHEN “0101”,

output <= “1111111” WHEN OTHERS;

ECET 331 - Digital Integrated Circuits

SS Architecture Outputs
O

<= output(6);
<= output(5);
output(4);

<= output(3);

<= output(2);
f <= output(l);
g <= output(0);

Intermediate signal
output(6 downto 0) is
mapped to portsa-g

® a o0 T o
A
il

END seven_segment;

ECET 331 - Digital Integrated Circuits

VHDL Sequential Process
C |

e A process is a VHDL construct which encloses
statements which are to be evaluated
sequentially

e A process is executed when a signal in a
sensitivity list changes

PROCESS(Sensitivity List)
BEGIN

Sequential Statements;
END PROCESS;

ECET 331 - Digital Integrated Circuits

Ripple Blanking Process (3)
C |

e Process steps are evaluated in order:
® First 1F-THEN statements
® Then CASE statements
® and so on until END PROCESS;

ECET 331 - Digital Integrated Circuits

IF-THEN-ELSE

G
e |[F-THEN-ELSE statements are used for
conditional testing on certain inputs or
signals

e Used extensively in HDLs and sequential
logic

e Implies priority

ECET 331 - Digital Integrated Circuits

Priority Encoder Architecture
G

ARCHITECTURE priorenc OF enc3to8 IS
BEGIN
Q(2) <= D(7) OR D(6) OR D(5) OR D(4);
Q(1) <= D(7) OR D(6) OR ((not D(5)) and
(not D(4)) and D(3))
OR ((not D(5)) and (not D(4)) and D(2)) ;
Q(0) <= -- In a similar fashion

END priorenc;

ECET 331 - Digital Integrated Circuits

11

Another Encoder Form
¢]

o WHEN-ELSE is similar to IF-THEN-ELSE

BEGIN
Q <= 7 WHEN D(7) = “1 ELSE
6 WHEN D(6) = “1” ELSE
5 WHEN D(5) = “1” ELSE
4 WHEN D(4) = “1° ELSE
3 WHEN D(3) = “1” ELSE
2 WHEN D(2) = “1” ELSE

0;
ECET 331 - Digital Integrated Circuits

4-to-1 Mux Architecture
. |

ARCHITECTURE mux4tol OF mux4 IS

BEGIN
PROCESS(S) -- Process is sensitive to S (S1,50) Selects
BEGIN
CASE S IS
WHEN “00” => Y <= D(0);
WHEN “017 => Y <= D(1);
WHEN “10” => Y <= D(2);

WHEN 117 => Y <= D(3);

WHEN OTHERS => Y <= “0;
END CASE;
END PROCESS;

END mux4tol;
ECET 331 - Digital Integrated Circuits

4-Bit Magnitude Comparator
Architecture

ARCHITECTURE behavioral OF mag4 1S
SIGNAL compare : STD_LOGIC_VECTOR(2 downto 0);

BEGIN

PROCESS (ai,bi) -- Sensitive to Ai and Bi Integer Arrays
BEGIN

IF ai < bi THEN compare <= “110”;
ELSIF ai = bi THEN compare <= “101”;
ELSIF ai > bi THEN compare <= “011";
ELSE compare <= “1117;

END IF;

agtb <= compare(2);

aegb <= compare(1);
altb <= compare(0);

ECET 331 - Digital Integrated Circuits

Parity Generator (6-Bit) Architecture
. |

ARCHITECTURE behavioral OF pargen 1S
BEGIN
paritv <= A0 XOR Al XOR A2 XOR A3 XOR A4 XOR A5;

END behavioral;

ECET 331 - Digital Integrated Circuits

Structured VHDL (Terms)
e

e Hierarchy

® A group of design entities associated in a series of
levels (the hierarchy) in which complete designs form
portions or subsections of the upper design

e Component

® A complete VHDL Design Entity that can be used as
part of a higher level file in a hierarchical design

ECET 331 - Digital Integrated Circuits

Structured VHDL (Terms)
|

e Port

® An input or output of a VHDL design entity or
component

e Component Declaration

® A statement that defines the 10 port names of a
component in a VHDL design entity

e Instantiate
® To use an instance of a component

ECET 331 - Digital Integrated Circuits

12

Structured VHDL (Terms)
(|

e Component Instantiation

® A statement that maps the port names of a
VHDL component to port names, internal
signals, or variables of a higher level VHDL
design entity

® Also called a PORT MAP

ECET 331 - Digital Integrated Circuits

Structured VHDL (example)

auks -

ECET 331 - Digital Integrated Circuits

Full Adder VHDL Entity
C |

ENTITY full_add 1S
PORT(a, b, cin :IN BIT;

cout, sum :OUT BIT);
END full_add;

ECET 331 - Digital Integrated Circuits

Full Adder VHDL Architecture
¢]

ARCHITECTURE adder OF full_add IS

BEGIN
cout <= ((a XOR b) AND CIN) OR (a AND b);
sum <= (a XOR b) XOR cin;

END adder;

ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder Entity
e

ENTITY add4par 1S

PORT(cO tIN BIT;
a, b :IN BIT_VECTOR(4 downto 1);
c4 tOUT BIT;

sum OUT BIT_VECTOR(4 downto 1));
END add4par;

ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder Component
|

COMPONENT full_add -- Previous FA Design Entity
PORT(a, b, cin cIN BIT;

cout, sum tOUT BIT);
END COMPONENT

SIGNAL ¢ :BIT_VECTOR(3 downto 1)

-- Internal signal used for intermediate carries

ECET 331 - Digital Integrated Circuits

13

4-Bit Parallel Adder
. |

e This design uses the 1-bit FA as a Component to
create the 4-bit parallel adder

e The basic adder component is mapped four
times uses a component instantiation such as
adderl, adder2, etc.

e The connections are set as a PORT MAP for each
instance of the component

ECET 331 - Digital Integrated Circuits

4-Bit Adder Structured Architecture
. |

BEGIN

adderl: full_add -- This defines the first component
PORT MAP(a => A(1), b=> B(1), cin => C(0),
cout => C(1), sum=> SUM(1));
adder2: full_add -- This defines the second component
PORT MAP(a => A(2), b=> B(2), cin => C(1),
cout => C(2), sum=> SUM(2));

adder3: full_add -- This defines the third component
PORT MAP(a => A(3), b=> B(3), cin => C(2),
cout => C(3), sum=> SUM(3));

adder4: full_add -- This defines the fourth component
PORT MAP(a => A(4), b=> B(4), cin => C(3),
cout => C4, sum=> SUM(4));
END adder;

ECET 331 - Digital Integrated Circuits

Other Structures
¢]

e The preceding example mapped directly to 4 FA
components

e Another approach would be to use a VHDL repetitive loop
construct called a GENERATE statement

e This is similar to a FOR loop with an index variable

e Both types are still ripple-carry adders

ECET 331 - Digital Integrated Circuits

4-Bit Adder Architecture with
GENERATE Statement

ARCHITECTURE adder of add4gen IS
COMPONENT full_add
PORT (a, b, cin : IN BIT;
cout, sum : OUT BIT);
SIGNAL ¢ : BIT_VECTOR (4 downto 0);
BEGIN
c(0) <= CO;
FOR i IN 1 to 4 GENERATE
adders: full_add PORT MAP(a(i), b(i), C(i-1), C(i), sum(i));
END GENERATE;
END adder;

ECET 331 - Digital Integrated Circuits

14

