

Basic Ru	es (Un	si	gne	d)
One bit un	signe	ed a	ndc	lition	
Cin	A	в		Sum	Cout
	0 +	• 0	=	0	0
	0 +	1	=	1	0
	1 +	1	=	0	1
1 +	+ 1 +	1	=	1	1
				E	ECET 331 - Digital Integrated Circuits

Basic Sul	btı	ra	cti	0	n Rules
One bit un	nsi	gn	ed	รม	ubtraction
Borrow	A		в		Diff
	0	-	0	=	0
	1	-	0	=	1
	1	-	1	=	0
1	0	-	1	=	1 $(2_{10} - 1_{10} = 1_{10})$
					ECET 331 - Digital Integrated Circuits

True Magnitude Form
 MSB is the sign bit (Negative: S = 1) Other bits are the magnitude
• 5-bit number examples:
+25 ₁₀ = 011001 -25 ₁₀ = 111001 (Same as +25 with S=1)
$+12_{10} = 001100$ $-12_{10} = 101100$ (Same as +12 with S=1)
ECET 331 - Digital Integrated Circuits

ASCII Code

- American Standard Code for Information Interchange
- A seven bit alphanumeric code used to represent text letters, numerals, punctuation, and special controls
- An expanded 8 bit form is often used also • Allows for some graphical characters

ECET 331 - Digital Integrated Circuits

Full Adder					
- Adda a Cin ta tha UA					
Adds a Clin to the HA	A	в	Cin	Cout	Sum
Basic Equations:	==	===			
	0	0	0	0	0
Cout = (A xor B)Cin + AB	0	0	1	0	1
	0	1	0	0	1
S = (A xor B) xor Cin	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1
		ECE	T 331 - Digi	ital Integrated	d Circuits

Ripple Carry

- Each Stage will have a propagation delay on the $C_{\rm IN}$ to $C_{\rm OUT}$ of one AND gate and one OR gate
- A 4-Bit ripple carry adder will then have a propagation delay on the final C_{OUT} of 4 X 2 = 8 gates
- A 32 Bit adder such as in a μP in a PC could have a delay of 64 Gates

ECET 331 - Digital Integrated Circuits

SS (CA) Architecture Internal States
WITH input SELECT
output <= "0000001" WHEN "0000",
output <= "1001111" WHEN "0001",
output <= "0010010" WHEN "0010",
output <= "0000110" WHEN "0011",
output <= "1001100" WHEN "0100",
output <= "0100100" WHEN "0101",
output <= "1111111" WHEN OTHERS;
ECET 331 - Digital Integrated Circuits

Another Encoder Form
WHEN-ELSE is similar to IF-THEN-ELSE
BEGIN
$Q \le 7$ WHEN D(7) = '1' ELSE
6 WHEN D(6) = '1' ELSE
5 WHEN $D(5) = 1'$ ELSE
4 WHEN $D(4) = 1'$ ELSE
3 WHEN D(3) = '1' ELSE
2 WHEN $D(2) = 1'$ ELSE
0;
ECET 331 - Digital Integrated Circuits

4-to-1 Mux Architecture
ARCHITECTURE mux4tol OF mux4 IS
BEGIN
PROCESS(S) Process is sensitive to S (S1,S0) Selects
BEGIN
CASE S IS
WHEN "00" => Y <= D(0);
WHEN "01" => Y <= D(1);
WHEN "10" => Y <= D(2);
WHEN "11" => Y <= D(3);
WHEN OTHERS => Y <= '0';
END CASE;
END PROCESS;
END mux4tol; ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder

- This design uses the 1-bit FA as a Component to create the 4-bit parallel adder
- The basic adder component is mapped four times uses a component instantiation such as adder1, adder2, etc.
- The connections are set as a PORT MAP for each instance of the component

ECET 331 - Digital Integrated Circuits

4-Bit Adder Architecture with GENERATE Statement

ARCHITECTURE adder of add4gen IS COMPONENT full_add PORT (a, b, cin : IN BIT; cout, sum : OUT BIT); SIGNAL c : BIT_VECTOR (4 downto 0); FOR i IN 1 to 4 GENERATE adders: full_add PORT MAP(a(i), b(i), C(i-1), C(i), sum(i)); END GENERATE:

ECET 331 - Digital Integrated Circuits