
1

ECET 331 – Digital Integrated Circiuts

Chapter 7

Digital Arithmetic and
Arithmetic Circuits

ECET 331 - Digital Integrated Circuits

Basic Digital Arithmetic

Signed binary number
• A binary number of fixed length whose sign (+/-) is

represented by one bit (usually MSB) and its magnitude
by the remaining bits

Unsigned binary number
• A binary number of fixed length whose sign is not

specified by a bit
• All bits are magnitude and the sign is assumed +

ECET 331 - Digital Integrated Circuits

Unsigned Binary Arithmetic

Sum
• Result of an addition operation of two (or more) binary

numbers (operands)
Augend
Addend

Carry
• A digit (or bit) that is carried over to the next most

significant bit during an N-bit addition operation
• The carry bit is a 1 if the result was too large to be

expressed in N bits

ECET 331 - Digital Integrated Circuits

Basic Rules (Unsigned)

One bit unsigned addition

Cin A B Sum Cout
0 + 0 = 0 0
0 + 1 = 1 0
1 + 1 = 0 1

1 + 1 + 1 = 1 1

ECET 331 - Digital Integrated Circuits

Binary Addition (example 1)

1
10010

+ 1010
11100

ECET 331 - Digital Integrated Circuits

Binary Addition (example 2)

1 11111
10101110

+ 10010011
101000001

2

ECET 331 - Digital Integrated Circuits

Basic Subtraction

X = A – B
• A = minuend
• B = subtrahend
• X = difference or result
• Requires a borrow bit if A < B

Other forms of subtraction exist
• 2’s complement addition (used in

microprocessors)

ECET 331 - Digital Integrated Circuits

Basic Subtraction Rules

One bit unsigned subtraction

Borrow A B Diff
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0

1 0 - 1 = 1 (210 – 110 = 110)

ECET 331 - Digital Integrated Circuits

Binary Subtraction (example 1)

1110
- 1001

?

110(10) Borrow Stage

- 100 1
010 1

(14 – 9 = 5)

ECET 331 - Digital Integrated Circuits

Binary Subtraction (example 2)

10000
- 101

?

0111(10) Borrow ripples to LSB

- 10 1
101 1

(16 – 5 = 11)

ECET 331 - Digital Integrated Circuits

Signed Binary Numbers

Sign bit
• A bit (usually the MSB) that indicates whether

a number is positive(=0) or negative (=1)

Magnitude Bits
• The bits of a signed binary number that tell

how large it is in value

ECET 331 - Digital Integrated Circuits

Signed Binary Numbers

True Magnitude Form
• A form of signed binary whose magnitude bits are the

TRUE binary form (not complements)

1’s Complement
• A form of signed binary in which negative numbers are

created by complementing all bits

2’s Complement
• A form of signed binary number in which the negative

numbers are created by complementing all the bits and
adding a 1 (1’s Complement + 1)

Note:
Positive numbers are the
same in all three forms

3

ECET 331 - Digital Integrated Circuits

True Magnitude Form

MSB is the sign bit (Negative: S = 1)
• Other bits are the magnitude

• 5-bit number examples:

+2510 = 011001
-2510 = 111001 (Same as +25 with S=1)

+1210 = 001100
-1210 = 101100 (Same as +12 with S=1)

ECET 331 - Digital Integrated Circuits

1’s Complement Form

MSB is the sign bit (Negative: S = 1)
• Other bits are the magnitude

• 8-bit number examples:

+5710 = 00111001
-5710 = 11000110 (All bits inverted)

+7210 = 01001000
-7210 = 10110111 (All bits inverted)

1’s Complement Form

A form of binary number in
which negative numbers are
generated by complementing
all bits of a number including

the sign bit

ECET 331 - Digital Integrated Circuits

2’s Complement Form

Used in µP arithmetic

A negative number in
2’s complement form
can be made positive
by 2’s complementing
it again

+57 = 00111001
-57 = 11000110 (1’s comp)

+ 1
11000111 (2’s comp)

+72 = 01001000
-72 = 10110111 (1’s comp)

+ 1
10111000 (2’s comp)

2’s Complement Form

A form of binary number in
which negative numbers are
generated adding 1 to the 1’s

complement form of the
number

ECET 331 - Digital Integrated Circuits

Signed Binary Addition

Done in the same way
as unsigned addition
except…
• Both operands must

have the same number
of magnitude bits

• Both operands must
have a sign bit

Positive: Sign = 0

+30: 00011110
+75: + 01001011

+105: 01101001

ECET 331 - Digital Integrated Circuits

Signed Binary Subtraction

Using complement notation, we can add a
negative number rather than subtracting a
positive number
• Same circuitry for both operations
• This does not work for true magnitude

numbers

ECET 331 - Digital Integrated Circuits

1’s Complement Subtraction

Add the 1’s
complement and
then add any
carry

+8010 = 01010000
+6510 = 01000001
-6510 = 10111110 (1’s comp)

80 01010000
-65 + 10111110

1 00001110
+ 1 (End around carry)

+15 00001111

4

ECET 331 - Digital Integrated Circuits

2’s Complement Subtraction

Add the 2’s
complement to
the minuend

If a carry results,
discard it

+8010 = 01010000
+6510 = 01000001
-6510 = 10111110 (1’s complement)

+ 1
-6510 = 10111111 (2’s complement)

80 01010000
-65 + 10111111
+15 1 00001111 (Discard the carry)

ECET 331 - Digital Integrated Circuits

Negative Sum or Difference

If True Magnitude Form is used for
subtraction, results will be incorrect

If the results from a 1’s complement or 2’s
complement is negative (S=1), the
magnitude is found by taking the
complement of the result

ECET 331 - Digital Integrated Circuits

Negative Sum or Difference

+65: 0100 0001
-80: + 1011 0000 (2’s C.)

1111 0001 (Negative sum)
0000 1110 (Invert)

+ 1 (Add 1)
0000 1111 (Final Answer: 15, negative)

ECET 331 - Digital Integrated Circuits

Range of Signed Numbers

Range of positive numbers is 0 to 2N – 1 for an N-
bit magnitude

Range of negative numbers is -1 to -2N for an N-
bit magnitude

Example: 8-bit range (i.e. 7-bit magnitude)
(-27 < x < 27 – 1) or (-128 < x < 127)

ECET 331 - Digital Integrated Circuits

Exercise

Write -1610 as an 8-bit
2’s complement
number

+16 = 00010000
-16 = 11101111 (1’S C.)

+ 1 (Add 1)
11110000 (2’s C.)

ECET 331 - Digital Integrated Circuits

Sign Bit Overflow

Overflow
• A erroneous carry into the sign bit of a signed

binary number that results from a sum or
difference that is larger than can be
represented by the magnitude bits

Results in a false positive or a false
negative number

5

ECET 331 - Digital Integrated Circuits

False Negative Overflow

8-bit addition

Two positive
numbers added
with a result
greater than +127
for 8-bit numbers
causes an
overflow

+75: 01001011
+96: + 01000001

10101011 (negative - False)

ECET 331 - Digital Integrated Circuits

False Positive Overflow

Addition of two 8-bit
negative numbers

Two positive
numbers added with
a result greater than
+127 for 8-bit
numbers causes an
overflow

-80: 10110000 (2’s C.)
-65: + 10111111 (2’s C.)

01101111 (positive - False)

A sum of 2 positive numbers is always
positive. A sum of 2 negative numbers
is always negative. Any 2’s complement
arithmetic which contradicts this has
produced an overflow in the sign bit.

ECET 331 - Digital Integrated Circuits

Hexadecimal Addition

Similar to decimal addition with additional digits
A – F

F + 1 = 10
F + F = 1E
F + F + 1 = 1F

Easier than working with large binary numbers

ECET 331 - Digital Integrated Circuits

BCD Codes

Binary Coded Decimal
• A code used to represent each decimal digit of

a number by a 4-bit binary value

• Valid Digits for 0-9 are (0000 to 1001) the
binary codes 1010 to 1111 are invalid

• Called an 8421 Code due to the decimal
weight of each bit position

ECET 331 - Digital Integrated Circuits

BCD (examples)

498710 = 0100 1001 1000 0111 (BCD)
8410 = 1000 0100 (BCD)

• Each digit is a 4 Bit Binary group

ECET 331 - Digital Integrated Circuits

Gray Code

A binary code that
progresses such that only
one bit changes between
two successive codes

Generated as
g3 = b3
g2 = b3 xor b2
g1 = b2 xor b1
g0 = b1 xor b0

Very useful in hardware
design

Decimal True Binary Gray Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

6

ECET 331 - Digital Integrated Circuits

ASCII Code

American Standard Code for Information
Interchange

A seven bit alphanumeric code used to represent
text letters, numerals, punctuation, and special
controls

An expanded 8 bit form is often used also
• Allows for some graphical characters

ECET 331 - Digital Integrated Circuits

Binary Adders

Half Adder(HA): A circuit that will add two
bits and produce a sum and carry result

Full Adder(FA): A circuit that will add a
carry bit from another HA or FA (previous
stage) and two operand bits to produce a
sum and carry result

ECET 331 - Digital Integrated Circuits

Basic HA Addition

One bit addition rules
• Three possible combinations

0 + 0 = 00
0 + 1 = 01
1 + 1 = 10

ECET 331 - Digital Integrated Circuits

HA Circuit

Basic Equations
(S = Sum, C = Carry)

• S = A xor B

• C = A and B

A B C S
============

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ECET 331 - Digital Integrated Circuits

HA Circuit and Symbol

ECET 331 - Digital Integrated Circuits

Full Adder

7

ECET 331 - Digital Integrated Circuits

Full Adder

Adds a Cin to the HA

Basic Equations:

Cout = (A xor B)Cin + AB

S = (A xor B) xor Cin

A B Cin Cout Sum
======================
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

ECET 331 - Digital Integrated Circuits

FA Circuit

ECET 331 - Digital Integrated Circuits

FA Circuit (Using HAs)

A S
HA

B Cout

A S
HA

B Cout

OR

B

A

Cin

Cout

Sum

AB

A xor B

ECET 331 - Digital Integrated Circuits

Parallel (N-bit) Binary Adder

FA

A S

B

Cin Cout

A1

B1

0

S1

FA

A S

B

Cin Cout

A2

B2

S2

FA

A S

B

Cin Cout

AN

BN

SN

…

Cout

LSB MSB

ECET 331 - Digital Integrated Circuits

Ripple Carry

In the N-Bit Parallel Adder (FA Stages) the
COUT is generated by the last stage (FAN)

This is called a Ripple Carry Adder
because the final COUT (Last Stage) is
based on a ripple through each stage by
CIN at the LSB Stage

ECET 331 - Digital Integrated Circuits

Ripple Carry

Text: figure 7.11

8

ECET 331 - Digital Integrated Circuits

Ripple Carry

Each Stage will have a propagation delay on the
CIN to COUT of one AND gate and one OR gate

A 4-Bit ripple carry adder will then have a
propagation delay on the final COUT of 4 X 2 = 8
gates

A 32 Bit adder such as in a µP in a PC could have
a delay of 64 Gates

ECET 331 - Digital Integrated Circuits

Fast Carry (or Look-Ahead Carry)

A combinational network that generates
the final COUT directly from the operand
bits (A1 to AN, B1 to BN)

It is independent of the operations of each
FA Stage (unlike the ripple carry)

ECET 331 - Digital Integrated Circuits

Fast (Look-Ahead) Carry

Has a small propagation delay compared
to the ripple carry

Delay is 3 gates for a 4-bit adder
compared to 8 for the ripple carry

ECET 331 - Digital Integrated Circuits

Subtractor (2’s Complement)

Subtraction using 2’s complement
addition allows use of parallel FAs

The subtract operation involves adding
the inverse of the subtrahend to the
minuend and then add a 1

ECET 331 - Digital Integrated Circuits

Subtraction (2’s Complement)

Difference = A - B = A + !B + 1

This operation can be done in a parallel N-Bit FA
by Inverting B1 through BN and connecting CIN at
the LSB Stage to +5V (adding 1)

The circuit can be modified to allow either the
ADD or SUBTRACT operation to be performed

ECET 331 - Digital Integrated Circuits

XOR as Programmable Inverter

XOR as a Programmable Inverter – (See Text pp.381-382)

9

ECET 331 - Digital Integrated Circuits

Adder / Subtractor

See Dueck for Figure 7.15

ECET 331 - Digital Integrated Circuits

BCD Adder (1)

A parallel adder whose output sum is in groups
of 4 bits each representing a BCD (8421) digit

Basic design is a 4-bit binary parallel adder to
generate a 4-bit sum of A + B

Sum is input to the four bit input of a BIN to BCD
code converter

ECET 331 - Digital Integrated Circuits

BCD Adder (2)

Standard binary adder
with a code converter

If the sum is greater
than 9, add 6 to
convert to BCD

Greater than 9 if Σ1
and Σ3 or Σ2

ECET 331 - Digital Integrated Circuits

BCD Code Converter

Code converter design is based on the 4-bit
adder used with Table 7.11 in the text

The complete design is shown in Fig. 7.26

The Ai inputs of the code converter adder are
fixed to be either a 0000 (C =0) or 0110 (C=1). The
0110 corrects binary overflow to BCD

ECET 331 - Digital Integrated Circuits

Entity Example

ENTITY decode1 IS

PORT(D1,D0 : IN BIT;

Y0,Y1,Y2,Y3 : OUT BIT);

END decode1;

2-to-4 decoder

ECET 331 - Digital Integrated Circuits

Architecture Example

ARCHITECTURE behavioral OF decode1 IS

BEGIN

Y0 <= (not D1) and (not D0);

Y1 <= (not D1) and (D0);

Y2 <= (D1) and (not D0);

Y3 <= (D1) and (D0);

END decoder;

10

ECET 331 - Digital Integrated Circuits

Another Entity Format

ENTITY decode1 IS

PORT(D : IN STD_LOGIC_VECTOR(1 downto 0);

Y : OUT STD_LOGIC_VECTOR(3 downto 0));

END decode1;

ECET 331 - Digital Integrated Circuits

Another Entity Format

This format groups signals of similar
purpose
into a bus (or vector)

Instead of D1, D0 we use D(1 downto 0)
Instead of Y3, Y2, Y1, Y0,
we use Y(3 downto 0)

ECET 331 - Digital Integrated Circuits

Selected Signal Assignments

Uses a VHDL construct called
WITH SELECT

Basic Format
WITH (my_vector) SELECT

The selected signal state us used to
determine the output changes

ECET 331 - Digital Integrated Circuits

Architecture Using Selected Signal
Assignment

ARCHITECTURE behavioral OF decode1 IS

BEGIN

WITH (D) SELECT

Y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN OTHERS;

END decoder;

ECET 331 - Digital Integrated Circuits

Seven Segment Decoder Entity

ENTITY bcd_7seg IS

PORT(d3, d2, d1, d0 : IN BIT;

a,b,c,d,e,f,g : OUT BIT);

END bcd_7seg;

-- Defines binary inputs d0 to d3

-- Defines SS outputs a to g

ECET 331 - Digital Integrated Circuits

Seven Segment
Decoder (CA) Architecture

ARCHITECTURE seven_segment OF bcd_7seg IS

SIGNAL input : BIT_VECTOR(3 downto 0);

SIGNAL output : BIT_VECTOR(6 downto 0);

BEGIN

input <= D3 & D2 & D1 & D0

-- Uses two intermediate signals called

-- input and output (internal no pins)

-- Creates an array by using the concatenate

-- operator (&) In this case input(3) <= D3,

-- input(2) <= D2 etc.

11

ECET 331 - Digital Integrated Circuits

SS (CA) Architecture Internal States

WITH input SELECT

output <= “0000001” WHEN “0000”,

output <= “1001111” WHEN “0001”,

output <= “0010010” WHEN “0010”,

output <= “0000110” WHEN “0011”,

output <= “1001100” WHEN “0100”,

output <= “0100100” WHEN “0101”,

...

output <= “1111111” WHEN OTHERS;

ECET 331 - Digital Integrated Circuits

SS Architecture Outputs

a <= output(6);

b <= output(5);

c <= output(4);

d <= output(3);

e <= output(2);

f <= output(1);

g <= output(0);

END seven_segment;

Intermediate signal
output(6 downto 0) is
mapped to ports a - g

ECET 331 - Digital Integrated Circuits

VHDL Sequential Process

A process is a VHDL construct which encloses
statements which are to be evaluated
sequentially
A process is executed when a signal in a
sensitivity list changes

PROCESS(Sensitivity List)

BEGIN

Sequential Statements;

END PROCESS;

ECET 331 - Digital Integrated Circuits

Ripple Blanking Process (3)

Process steps are evaluated in order:
• First IF-THEN statements
• Then CASE statements
• and so on until END PROCESS;

ECET 331 - Digital Integrated Circuits

IF-THEN-ELSE

IF-THEN-ELSE statements are used for
conditional testing on certain inputs or
signals

Used extensively in HDLs and sequential
logic

Implies priority

ECET 331 - Digital Integrated Circuits

Priority Encoder Architecture

ARCHITECTURE priorenc OF enc3to8 IS

BEGIN

Q(2) <= D(7) OR D(6) OR D(5) OR D(4);

Q(1) <= D(7) OR D(6) OR ((not D(5)) and

(not D(4)) and D(3))

OR ((not D(5)) and (not D(4)) and D(2)) ;

Q(0) <= -- In a similar fashion

END priorenc;

12

ECET 331 - Digital Integrated Circuits

Another Encoder Form

WHEN-ELSE is similar to IF-THEN-ELSE

BEGIN

Q <= 7 WHEN D(7) = ‘1’ ELSE

6 WHEN D(6) = ‘1’ ELSE

5 WHEN D(5) = ‘1’ ELSE

4 WHEN D(4) = ‘1’ ELSE

3 WHEN D(3) = ‘1’ ELSE

2 WHEN D(2) = ‘1’ ELSE

| |

0;
ECET 331 - Digital Integrated Circuits

4-to-1 Mux Architecture

ARCHITECTURE mux4to1 OF mux4 IS

BEGIN

PROCESS(S) -- Process is sensitive to S (S1,S0) Selects

BEGIN

CASE S IS

WHEN “00” => Y <= D(0);

WHEN “01” => Y <= D(1);

WHEN “10” => Y <= D(2);

WHEN “11” => Y <= D(3);

WHEN OTHERS => Y <= ‘0’;

END CASE;

END PROCESS;

END mux4to1;

ECET 331 - Digital Integrated Circuits

4-Bit Magnitude Comparator
Architecture

ARCHITECTURE behavioral OF mag4 IS

SIGNAL compare : STD_LOGIC_VECTOR(2 downto 0);

BEGIN

PROCESS (ai,bi) -- Sensitive to Ai and Bi Integer Arrays

BEGIN

IF ai < bi THEN compare <= “110”;
ELSIF ai = bi THEN compare <= “101”;
ELSIF ai > bi THEN compare <= “011”;
ELSE compare <= “111”;
END IF;

agtb <= compare(2);
aeqb <= compare(1);
altb <= compare(0);

ECET 331 - Digital Integrated Circuits

Parity Generator (6-Bit) Architecture

ARCHITECTURE behavioral OF pargen IS

BEGIN

paritv <= A0 XOR A1 XOR A2 XOR A3 XOR A4 XOR A5;

END behavioral;

ECET 331 - Digital Integrated Circuits

Structured VHDL (Terms)

Hierarchy
• A group of design entities associated in a series of

levels (the hierarchy) in which complete designs form
portions or subsections of the upper design

Component
• A complete VHDL Design Entity that can be used as

part of a higher level file in a hierarchical design

ECET 331 - Digital Integrated Circuits

Structured VHDL (Terms)

Port
• An input or output of a VHDL design entity or

component

Component Declaration
• A statement that defines the IO port names of a

component in a VHDL design entity

Instantiate
• To use an instance of a component

13

ECET 331 - Digital Integrated Circuits

Structured VHDL (Terms)

Component Instantiation
• A statement that maps the port names of a

VHDL component to port names, internal
signals, or variables of a higher level VHDL
design entity

• Also called a PORT MAP

ECET 331 - Digital Integrated Circuits

Structured VHDL (example)

ECET 331 - Digital Integrated Circuits

Full Adder VHDL Entity

ENTITY full_add IS

PORT(a, b, cin :IN BIT;

cout, sum :OUT BIT);

END full_add;

ECET 331 - Digital Integrated Circuits

Full Adder VHDL Architecture

ARCHITECTURE adder OF full_add IS

BEGIN

cout <= ((a XOR b) AND CIN) OR (a AND b);

sum <= (a XOR b) XOR cin;

END adder;

ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder Entity

ENTITY add4par IS

PORT(c0 :IN BIT;

a, b :IN BIT_VECTOR(4 downto 1);

c4 :OUT BIT;

sum :OUT BIT_VECTOR(4 downto 1));

END add4par;

ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder Component

COMPONENT full_add -- Previous FA Design Entity

PORT(a, b, cin :IN BIT;

cout, sum :OUT BIT);

END COMPONENT

SIGNAL c :BIT_VECTOR(3 downto 1)

-- Internal signal used for intermediate carries

14

ECET 331 - Digital Integrated Circuits

4-Bit Parallel Adder

This design uses the 1-bit FA as a Component to
create the 4-bit parallel adder

The basic adder component is mapped four
times uses a component instantiation such as
adder1, adder2, etc.

The connections are set as a PORT MAP for each
instance of the component

ECET 331 - Digital Integrated Circuits

4-Bit Adder Structured Architecture

BEGIN

adder1: full_add -- This defines the first component
PORT MAP(a => A(1), b=> B(1), cin => C(0),

cout => C(1), sum=> SUM(1));

adder2: full_add -- This defines the second component
PORT MAP(a => A(2), b=> B(2), cin => C(1),

cout => C(2), sum=> SUM(2));

adder3: full_add -- This defines the third component
PORT MAP(a => A(3), b=> B(3), cin => C(2),

cout => C(3), sum=> SUM(3));

adder4: full_add -- This defines the fourth component
PORT MAP(a => A(4), b=> B(4), cin => C(3),

cout => C4, sum=> SUM(4));
END adder;

ECET 331 - Digital Integrated Circuits

Other Structures

The preceding example mapped directly to 4 FA
components

Another approach would be to use a VHDL repetitive loop
construct called a GENERATE statement

This is similar to a FOR loop with an index variable

Both types are still ripple-carry adders

ECET 331 - Digital Integrated Circuits

4-Bit Adder Architecture with
GENERATE Statement

ARCHITECTURE adder of add4gen IS

COMPONENT full_add

PORT (a, b, cin : IN BIT;

cout, sum : OUT BIT);

SIGNAL c : BIT_VECTOR (4 downto 0);

BEGIN

C(0) <= C0;

FOR i IN 1 to 4 GENERATE

adders: full_add PORT MAP(a(i), b(i), C(i -1), C(i), sum(i));

END GENERATE;

END adder;

