

## Boolean Expression from <br> Logic Gate Network

- Similar to finding the expression for a single gate
- Inputs may be compound expressions that represent outputs from previous gates


## Bubble-to-Bubble Convention

- Choose gate symbols so that outputs with bubbles connect to inputs with bubbles
- Results in a cleaner notation and a clearer idea of the circuit function


Bubble-to-Bubble / Double Inversion (example)



ECET 331 - Digital Integrated Circuits

## Logic Diagrams from Boolean Expressions

- Called synthesis
- Use order of precedence
- A bar over a group of variables is the same as having those variables in parentheses
- Create levels of gating based on orders of precedence


Truth Tables from Logic Diagrams or Boolean Expressions

- Two methods:

1) Combine individual truth tables from each gate into a final output truth table
2) Develop a Boolean expression and use it to fill in the truth table

Which is more thorough? Which is more efficient?


Circuit Description Using Boolean
Expressions

## - Definitions:

- A product term is a part of a Boolean expression where one or more true or complement variables are ANDed
- A sum term is a part of a Boolean expression where one or more true or complement variables are ORed


Minterms and Maxterms

- Minterm
- A product term in a Boolean expression where all possible input variables appear once in true or complemented form

Examples: ABC; $\bar{A} B \bar{C}$

- Maxterm
- A sum term in a Boolean expression where all possible variables appear once in true or complemented form

$$
\text { Examples: }(A+B+C) ;(\bar{A}+B+\bar{C})
$$

## Deriving a SOP Expression from a Truth Table

1) Each line of the truth table with a 1 (HIGH) output represents a product term (a minterm) in the truth table's Boolean expression
2) Write all input variables for each minterm in true or complement form

- If an input variable's value is 0 , write it in complement form (with a bar over it)
- If an input variable's value is 1 , write it in true form (no bar)

3) Combine all minterms as a sum (OR them)



## Deriving a POS Expression from a Truth Table

1) Each line of the truth table with a 0 (LOW) output represents a sum term (a maxterm) in the truth table's Boolean expression
2) Write all input variables for each maxterm in true or complement form

- If a variable's value is 1 , write it in complement form (with a bar over it)
- If a variable's value is 0 , write it in true form (no bar)

3) Combine all maxterms as a product (AND them)

## Exercise

- Derive the SOP form for an XOR gate

Theorems of Boolean Algebra

## - 24 theorems

- Used to minimize a Boolean expression to reduce the number of logic gates in a network

Commutative Property

- An operation is commutative if it can be applied to its operands in any order without effecting the result
- AND and OR are commutative
- Theorem 1: $x y=y x$.
- Theorem 2: $x+y=y+x$

- The property allows us to distribute (multiply through) an AND across several OR functions
- Theorem 5: $x(y+z)=x y+x z$
- Theorem 6: $(x+y)(w+z)=x w+x z+y w+y z$



## Double Inversion

- Theorem 19: $x=\overline{\bar{x}}$
- Theorem 20: $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$
- Theorem 21: $\overline{x+y}=\bar{x} \cdot \bar{y}$



## Construction of a Karnaugh Map

- Square or rectangle divided into cells
- Each cell represents a line in the truth table
- Cell contents are the value of the output variable on that line of the truth table




## Grouping Cells

- Cells can be grouped as singles, pairs, quads and octets or hexadectets (i.e. in powers of 2)
- A pair cancels 1 variable
- A quad cancels 2 variables
- An octet cancels 3 variables
- A hexadectet cancels 4 variables


Grouping Cells Along Outside Edges


- The cells along an outside edge are adjacent to cells along the opposite edge
- In a four-variable map, the four corner cells are adjacent

Grouping Cells Along Outside Edges (example)

lonce as long as every group has at least one cell that does not belong to any other group

## Don't Care States

- The output state of a circuit for a combination of inputs that will never occur
- We can regard this state as a 1 or 0; whichever will yield maximum simplification
- Shown in a K-map as an "x"


