

What is LabVIEW

Stands for:

- Lab Virtual Instrument Engineering Workbench
- Powerful graphical programming environment
 Measurement
 - Control
 - Acquire, analyze and store data
- Read inputs (acquire data)
- · Process and display data
- Control Outputs
- Sound familiar?

LabVIEW Programs

- Called "Virtual Instruments"
 - VIs for short ("Vee Eye")
- Uses a graphical methodology
 - Easy to tell what the program should do by inspection
 - Easy to learn with little programming background
- Extensive library of common programming functions

Quick Start

- Invoke from icon
- Getting Started Screen
- New → Blank VI

Three Parts of a Program

Front Panel

- Various controls and indicators
 - Inputs, outputs
 Knobs, push buttons, switches, gauges, graphs, LEDs, etc.

Block Diagram

- Graphical programming source code
- Terminals corresponding to front panel controls (lower level VIs), constants, functions
- Data flow
 Wires connecting terminals
- Icon

- For using a VI as a subVI (a subroutine) Shows connections for wiring the VI into other programs
- Create hierarchy, modularity

Front Panel

• How the user interacts with the program Added by drag-and-drop from controls palette

Controls

- Inputs from the user
- Sources of data

Indicators

- Outputs to the user
- Destinations for data

Block Diagram

- · Similar to flow diagrams drawn in PLC labs
- The program source code for VIs
- Terminals
 - Entry or exit points for data (e.g. on functions)
- Nodes
 - Functions (e.g. add, subtract)
- Wires
 - Paths for data to flow

Palettes

- Tools Palette
 - Manipulate objects in a window
 - Run wires between objects
- Functions (or Controls) Palette
 - Place terminals or nodes in a window
 - Browse through to become familiar

LabVIEW Projects

- A way to organize files
- Good for large LabVIEW software designs
- Not needed for one or two VIs

VI Data Types • Three types Number Integer, floating point Various lengths: byte (8 bits), word (16 bits), long (32 bits), double precision (64 bits) Boolean True of false AND, OR, NOT combinations String Alphanumeric characters • Wires appearance automatically denotes data types being carried

Program Debug

- Execution Highlight
 Shows motion of all data continuously
 - May slow program execution
- Step Over

Observe a single execution step at each node

Step Into

Step into a subVI or loop and observe its execution by single steps

- Step Out
 - Step out of a subVI or loop and end its execution

Program Debug (cont'd)

- Breakpoint
 - Stop execution under a certain condition
- Probe
 - Add a probe that shows the value of a signal during execution

LabVIEW Tutorials

• Go to:

http://attila.sdsu.edu/me295/modules/labview/i ntro/introduce.html

(Link available on WebCT)

- Download exercises from lab computer
 - 8 exercises
 - 2 per day for four days

Student Edition of LabVIEW

- Available through National Instruments
 - <u>www.ni.com</u>

• \$96

Loops

Loop Structures

- While Loop
 - Run a portion of a VI as long as a certain condition is true/false
 - Example: On Switch

For Loop

- Run a portion of a VI a specified number of times
- Example: Turn a stepper motor 200 steps

While Loop

While loop border encloses a block of VI code
 Block Diagram > Functions > Structures > While Loop

- Block Diagram > Functions > Structures > While Li
 Drag a rectangle around the code of interest
- Includes a conditional terminal
 - Fed by a Boolean input
 - Determines an exit point

• Includes an iteration count

- Counts number of times a loop has executed
- First time is "iteration 0"
- Can be used for calculations in the loop

For Loop

- For Loop border encloses a block of VI code
 Block Diagram > Functions > Structures > For Loop
 - Drag a rectangle around the code of interest
- Includes a count terminal
 - Holds the pre-determined number of iterations
 - Usually a numeric constant
- Includes an iteration terminal
 - Counts the number of times the loop has been executed
 First time is interation "0"
 - First time is interation "0"
 Can be used for calculations in the loop
 - Can be used for calculations in the loop

Shift Registers

- Used with loops
- Stores data from each iteration of the loop
 - Averaging
 - Storing multiple iteration results

Waveform Charts

 Useful for watching data changes over time

Clusters

- A way to combine different pieces of data in a single connection
- Like individual wires in a cable

Sub VI

- Any VI can be used as a sub VI in another VI
 - An icon is needed to place it
 - Connectors are needed to wire to it