
System Calls and Interrupt Vectors in an Operating Systems
Course’

Mark A. Holliday
Western Carolina University

Department of Mathematics and Computer Science
Cullowhee, NC, 28723

holliday@wcu.edu

Abstract

The introductory operating systems course has a tendency
to appear to the student as a disparate collection of topics
such as synchronization primitives, process scheduling
algorithms, and page replacement policies. We describe a
sequence of material to cover early in the operating
systems course that prevents this tendency by clarifying
the goal of the course and by providing a framework for
understanding how the later course material is used in
kernel design. The material centers around two concepts.
First is the importance of the abstraction provided by the
system call interface, that the kernel is the implementation
of that interface, and the analogy with the instruction set
interface the student has already encountered. Second is
how the interrupt vector mechanism in a broad sense is
central to how the kernel functions and underpins the
actual implementation of many of the other topics in the
course, Illustration through code from a real operating
system kernel is a key feature of how this sequence makes
clear the workings of an operating system.

1 Introduction

Students often enter their first operating systems
course with anticipation. A key part of a computer system,
a part that they encounter every day, they will finally
understand. Unfortunately, too often the student leaves the
course disappointed. A sizable number of synchronization
primitives, process scheduling policies, and page
replacement policies have been memorized. However, how
the material fits together into a functioning operating
system is often not clear.

’ This research is supported by the National Science
Foundation under grant DUE-9650458.
permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
tllle of the
copying Is ii

ubllcation and its date appear, and notice is given that
y permission of ACM, Inc. To copy otherWise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGCSE ‘97 CA, USA
0 1997 ACM O-89791~889497/0002...$3.50

Over many semesters of teaching the first operating
systems course I have developed a sequence of material
covered early in the comae to address this problem. The
course starts with two key concepts that establish the goal
of the course and explain the basic machinery behind
much of the functioning of the kernel.

The first concept is that the goal of the course is
to understand the abstraction defined by the system call
interface and the software, the kernel, that implements that
abstraction. The second concept is that a very concrete,
non-magical, sequence of events based on the intermpt
vector mechanism is the underpinning for the operation of
the kernel. We have found that illustration using code
from a real operating system kernel is an important aid in
the student’s understanding these concepts. With these
concepts understood, a framework has been provided
which allows the remainder of the course to cover the
traditional material more effectively.

Precedents for these concepts can be found in
recent operating systems textbooks [2,3]. Also, a recent
paper [l] describes a sequence of programming
assignments for the operating systems course in which the
first assignment involves the use of UNIX system calls.
Our proposal is distinctive, however, in the emphasis that
we place on these two concepts and the extent to which we
integrate the system call and interrupt vector material. The
extent to which we integrate the other material in the
course within the mework of these two concepts and the
use of real code in a coordinated manner to reinforce these
two concepts are further distinctions of our approach.

In the next two Sections we describe the sequence
of material being proposed. Section Two discusses the
mate&I of the first concept: system caIls and the primary
goal of the course. Once the system call interface is
understood, there is a very natural organization of material
that goes Corn the specific steps of executing a system call
all the way through I/O devices. This development is
outlined in Section Three as the second concept. Section
Four reports on our experiences using this organization
and how this material can be used to lead into the
remainder of the course. We conclude in Section Five.

53

I

2 System Calls

The first concept states that the set of system calls is an
interface of an abstract machine and the kernel is the
software that implements that interface. The primary goal
of the course is identified as understanding this interface’s
abstraction and the design issues in the kernel’s
implementation. Identifying a primary goal for the course
is important. It is true, for example, that the concurrency
ideas covered in an operating systems course are not used
only in kernel design. Moreover, a first operating systems
course usually (and should) discuss distributed systems to
some extent. However, presenting those aspects of the
course as adjuncts to the central goal of understanding
how the kernel on a single processor works helps the
student maintain focus later in the semester when a large
number of topics are encountered.

System System Application Application
Programs Programs Programs Programs

Libra- Libra-
ries ries

OS Kernel OS Kernel

I Hardware
I

Figure 1: System Calls and Abstract Machines

Figure 1 is the illustration used when describing
the computer at run-time as layers of abstract machines.
Each layer has its own interface and implementation:
machine language for the hardware, system calls for the
kernel, and library calls for the libraries. That alternative
implementations of the same interface (e.g. both the
MINIX and Version 6 UNIX kernels are implementations
of the Version 6 UNIX system call interface) are possible
is noted. The step shape formed by the rectangles is
intentional and shows that the code of either a system
program or an application program can contain lines that
directly use any of the three levels. For example, the
source line a = b + c; will translate to a machine
instruction that does not involve the kernel or a library.
The source line read(fd, buf, 10); will translate to a
machirie instruction that calls a system call function. The
source line tout << a; will translate to a machine
instruction that will call a library function

A key part of this first concept is understanding
the system call interface. One approach is to provide a
textial deicription of some generic set of system calls. The
alternative that I have found more effective follows our

54

theme of using real code whenever possible. In particular
we use examples from the MlNIX operating syslcm that
was developed by Andrew Tanenbaum and described in
his text Operating Systems: Design and Implementation
[4]. MINX is an implementation of the Version 6 UNIX
system call interface that runs on PCs as the native
operating system. The Version 6 Unix system call interface
is a good choice since it contains most of the well-known
UNIX system calls, but is not as large as the system call
interfaces of later versions of UNIX.

2.1 Based on MlNlX Examples

Part of the MINIX distribution includes a tests
directory containing a set of short programs that cxercisc
the system call interface. Tanenbaum included thcsc
programs in the distribution so that developers could check
for problems after booting a rebuilt kernel. We USC
abbreviated versions of four of the tests to illustrate in a
very concrete manner the version 6 UNIX system call
interface. In the order that we present the programs to the
students, the test programs are:

Test 0. Illustrate basic file manipulation by a single
process. Cover the open& close(), crcato, rcado,
write& and Iseek system calls.
Test 1. Illustrate forking a child process with the
fork0 system call. The return value from the fork0
call is used as the condition of an if statement to
branch to the parent or child code both of which are in
the initial process image. Also use the pipe& wait&
and exit0 system calls for communication between the
parent and child processes.
Test 2. Illustrate use of the execveo system call for
starting execution of another process image by the
current process. Use in combination with the fork0
system call so that the parent process waits and the
child process calls execveo. Several versions of
execveo are used to illustrate argv[] versus envp[]
array passing. Also use the link0 and unlink0 system
calls to illustrate that file clescriptors arc part of the
environment passed to a forked child.
Test 3. Illustrate use of signaling with the signal&
kill& pause0 system calls. Use a signal handler and a
forked child process.

The original test programs ran on MINIX, but,
after trivial changes they have been made to run on
SunOS, Ultrix, and Linux machines (and should run on
any POSIX-compatible operating system). After being
shown the working test programs, the students’
understanding of the system call interface is reinforced by
an assignment in which they write their own set of short
programs that exercise the system calls. Five programs arc

assigned (the assignments and solutions are available by
contacting the author) as briefly described below.

1.

2.

3,

4.

5.

Have a parent process create a pipe and fork a child
process, Have the parent read and the child write from
the pipe.
Have multiple uses of the fork0 and execveo system
calls with complex arguments passed using argv.
Demonstrate extensive file manipulation between a
parent and forked child process.
Use the titneo, signdO, and pause0 system calls and
a signal handler for delaying a process.
Show synchronization through extensive use of
signals and signal handlers in both the parent and
child processes including trying to ignore a signal
using SIG-IGN.

Note the analogy with a computer architecture and
organization course, The students spend a considerable
amount of time in such a course learning example
instruction sets and writing short programs that use that
instruction set. How the instruction set is implemented is
then studied. Similarly, in an operating systems course the
students need to understand a concrete system call set and
write short programs that use that system call set. How the
system call set is implemented by the kernel is then
studied.

2.2 Based on Man Pages

A disadvantage of providing the students with complete,
working example programs from the MINIX tests
directory is that they are fairly similar to the assignment
programs. To make the assignment programs more
challenging, for the last hvo course offerings instead of the
example programs I provided the students with UNIX man
pages for all the relevant system calls plus a handout that
contained some program fragments. Those program
fragments were 1) which header files to include, 2) an
example use of fork& 3) the syntax of the signal0 system
call, 4) a fragment showing a signal handler and the
associated signal system call, 5) a fragment showing some
of the variants of the execveo system call and the argvfl
and cnvp[J arrays, and 6) the prototype for the fimction
main0 showing argc, argv[], and envpn. With this
approach the students eqerience having to work from a
system call interface specification.

3 Interrupt Vectors

The second concept can be expressed narrowly as: the
kernel uses a single mechanism, the interrupt vector, at its
lowest level for generating all exceptions including system
call traps. The second concept can be expressed more
broadly as: many of the features of an operating system
(such as, system call execution, input/output, process

-__-- ..-~_-. ..__ -- ..^ _-_ _~ ~--- -

scheduling, and virtual memory) have as a key step the use
of interrupt vectors. This set of features follows a natural
order. The start of that ordering is the events that occur
upon a system call invocation since the student has just
studied the system call interface. Again, realistic code
from MINIX is shown and traced to clarify the events. The
end of the ordering is various specific device drivers and
their relationships with the rest of the kernel.

3.1 Libraries

The first step introduces libraries as an archive file of
object modules of fimctions that can be linked to a user
program. A discussion of include files, static linking, and
dynamic linking arises. The next step demonstrates that a
library can provide through its set of functions an interface
that a user program can use through function calls. Thus,
the concept of an API (Application Programmers
Interface) is introduced. As an example of real code the
standard I/O library that is in the library libca is discussed
as an API above the I/O system calls. In particular, the
header file for the standard I/O library, stdio.h, and the
file putcc containing the putc() function of the standard
I/O library are shown. We note that the put@ code calls
an I/O system call, mriteo.

Knowing that the functions above the system calls
can be made into interfaces through libraries leads us to
how the system caI1 interface itself is defined through a
library. In particular, each system call has a function by
the same name in the library 1ibc.a. Thus, at compile-time
a system call use in a user program simply causes the
function by the same name in the library lihca to be
linked. Understanding that the library mechanism is being
used for both system calls and regular library functions is a
key step in the student’s understanding of how a user
program and the kernel interact. Again, code from libca
is used as reinforcement; the libca files, c1ose.c and
exeecc, for the close0 and execveo system calls,
respectively, are shown.

Next we consider the connection behveen the
system call function in the library and control being passed
to the kernel. The use of real code again is helpful.
Execution is traced within libca from the c1ose.c and
execc files to a cal1.c file and then to a sendrec.s
assembly language file that saves registers, calls the trap
instruction, and then (after the return from the trap)
restores the registers and returns to the cal1.c file. A point
made is that the system call invocation behaves to the user
program like a regular function call with control
eventually returning all the way to the statement in the
user program after the system call invocation.

55

3.2 Hardware Support

With attention focused on the trap instruction in the
sendrec.s file we turn to the hardware support. The
purposes of the Program Counter (PC) and Program Status
Word (PSW) registers are reviewed. We reinforce that
interrupt vectors exist in low memory and each vector has
a PC and PSW value by examining the MINK code for
boot time interrupt vector initialization. Discussion of the
PSW naturally leads to a discussion of user and supervisor
protection modes, how the protection mode changes, and
what additional access rights supervisor protection mode
allows. The effect of the trap instruction---saving of the
old PC and PSW register values and loading of the new
register values from the interrupt vector associated with
the trap instruction---is then identified as the general
action of the interrupt vector mechanism.

That the new PC value is the address of an

Initially we distinguish between synchronous
exceptions, or traps, that are internal to the processor and
asynchronous exceptions, or interrupts, which are due to
events external to the processor. Traps, in turn, arc
separated into those due to execution of the trap
instruction and those due to an anomalous event. Such
anomalous events in turn are separated into those that
indicate a problem (such as a divide-by-zero error or an
address translation generating a protection violation) and
those that serve to notify the kernel of work that the
hardware cannot do itself (such as an address translation
generating a page fault).

The processing done by the kernel for traps is
discussed briefly (reference is made to the deeper
discussion later in the course). Trap instructions cause the
requested system call actions to be performed, Anomalous
events that are problems usually cause the process to
terminate. Anomalous events that are requests for the
kernel to do something cause branching to kernel code

Exceptions

Initiated Instruction

Errors (e. g.
Divide-by-Z=-@

Need Kernel Help
(e. g. Page Faults)

I Figure 2: The Exception Taxonomy

exception handler raises the distinction between the state
saving done by the hardware and by the software.
Examining the assembly language portion of the exception
handler in MNX shows the large amount of context
saving (such as register saving) that must be done in
software. Examining this code helps make the concept of a
context switch more concrete and shows that the cost of a
context switch is nontrivial. The assembly portion at the
end of the exception handler that restores the initial state
and returns from the interrupt is also noted to show the
steps in returning control to the library.

3.3 Exceptions Taxonomy

Two natural questions arise at this point. First:
what happens between the two assembly language parts of
the exception handler for saving and restoring context?
Second: what are the other causes of transfer of control
through an interrupt vector? We address these questions by
introducing a taxonomy of all the types of exceptions (see
Figure 2).

(such as to a page fault handler) to perform that work.

The interrupt class of exceptions raises the subject
of the input/output subsystem. A general discussion of I/O
begins with I/O hardware including buses, devices, and
controllers. The associated kernel software, especially
interrupt handlers and device drivers, is identified. The
code from the MINX hard disk device driver illustrates
the interaction between kernel device drivers and I/O
controllers as well as the complex combination of
programmed I/O and interrupt-driven I/O that is necessary
in practical device drivers. Thus, the students set that the
I/O device (actually its controller) interact with the
processor and the kernel software at two levels. One lcvcl
has the controller’s interrupts interacting with the
processor’s interrupt vector mechanism and the kernel’s
exception handler. The second and higher level has the
controller’s data, control, and status registers interacting
with the corresponding device driver in the kernel.

The in-depth coverage of interrupt handling that
the students have seen helps motivate hvo I/O devices with
specialized functions: the DMA device and the clock. The
usefulness of DMA devices is explained in conjunction
with the discussion of the disk device driver. The DMA
device offloads the word-by-word interrupt processing of a
disk block read or write from the processor. The clock
simply generates periodic interrupts that can be used by
the kernel for timing measurements and in particular for
quantum expiration. Quantum expiration, in turn, is used
for preemptive, short-term process scheduling. Learning
that preemptive, short-term process scheduling can cause
concurrency problems naturally leads from this section of
the course to the later section of the course on
concurrency.

4 Experiences

The sequence of material described in this paper evolved
during teaching the operating systems course nine times
over an eight years. In a semester-length course the first
four weeks is sufficient time to cover the material. We now
highlight some points found by experience.

Of all the system calls, students find the fork0 system
call the hardest, particularly, the idea that there are
two returns with different return values from the
system call. The assembly language for the fork
system call has separate instructions for the system
call invocation, the store of the return value, and the
branch on the return value. Seeing this assembly
language students often find helpful since the
assembly language makes clear what actions are done
after the fork.

Initial attempts at the assignment program on
synchronization using signals can lead to the parent
and child processes deadlocking. This deadlock can be
used to motivate the deadlock problem when
encountered later in the course.

The exceptions taxonomy helps motivate and integrate
the material covered later in the course. Memory
management is touched on when discussing address
translation traps for protection violations and page
faults, Both process scheduling and one source of
concurrency problems are touched on when discussing
clock interrupts, quantum expirations, and their use in
preemptive process scheduling.

Illustrating the concepts discussed using carefully
selected code from a real kernel is effective in making
the material concrete. The next step in the student’s
learning involves Programming assignments
involving kernel modification. For that step our
experience is that the best choice for the remainder of
the course is to use a highquality kernel simulator

such as NACHOS [2]. The alternative of modifying
the native kernel of the machine (such as MINIX) is
unattractive since debugging is more difficult and the
kernel complexity makes many interesting
assignments beyond the reach of students in a first
operating systems course.

5. An assembly language course precedes the operating
systems course in our curriculum. I recently
successfully tried moving the material described in
this paper into the last four weeks of the earlier
course. This provides a natural connection between
the hvo courses and allows a more in-depth treatment
of topics in the operating systems course.

Conclusions

It is important that the operating systems course have a
welldefined focus, that it be clear how the different
algorithms and policies discussed fit together into a kernel,
and that the basic mechanisms underpinning the kernel be
understood instead of being “magic”. We have described a
sequence of material that can be used during the first part
of au operating systems course to ensure that these
objectives are achieved. The sequence of material has been
outlined and our experiences in using this organization
have been discussed.

The outlined material is based on hvo concepts.
First is the importance of the abstraction provided by the
system call interface, that the kernel is the implementation
of that interface, and the analogy with the instruction set
interface the student has already encountered. Second is
that the set of features centered about the interrupt vector
mechanism underpins how the kernel functions and relates
to many of the later topics in the course. Illustration
through code from a real operating system kernel is a key
feature of how this sequence makes clear the tictioning
of the operating system.

References

Ramakrishnan, S. and Lancaster, A-M. Operating
System Projects: Linking Theory, Practice, and Use.
Proc. of the 24th SIGCSE Tech. Symp. 24, 1 (Feb
1993).
Silberschatz, A. and Galvin, P.B. Operating System
Concepts, Fourth Edition. Addison-Wesley, Reading,
MA, 1994.
Tanenbaum, A. Operating Systems: Design and
Implementation. Prentice-Hall, Englewood Cliffs, NJ,
1987.
Tanenbaum, A. Modern Operating Systems. Prentice-
Hall, Englewood Cliffs, NJ, 1992.

57

