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Abstract 

The introductory operating systems course has a tendency 
to appear to the student as a disparate collection of topics 
such as synchronization primitives, process scheduling 
algorithms, and page replacement policies. We describe a 
sequence of material to cover early in the operating 
systems course that prevents this tendency by clarifying 
the goal of the course and by providing a framework for 
understanding how the later course material is used in 
kernel design. The material centers around two concepts. 
First is the importance of the abstraction provided by the 
system call interface, that the kernel is the implementation 
of that interface, and the analogy with the instruction set 
interface the student has already encountered. Second is 
how the interrupt vector mechanism in a broad sense is 
central to how the kernel functions and underpins the 
actual implementation of many of the other topics in the 
course, Illustration through code from a real operating 
system kernel is a key feature of how this sequence makes 
clear the workings of an operating system. 

1 Introduction 

Students often enter their first operating systems 
course with anticipation. A key part of a computer system, 
a part that they encounter every day, they will finally 
understand. Unfortunately, too often the student leaves the 
course disappointed. A sizable number of synchronization 
primitives, process scheduling policies, and page 
replacement policies have been memorized. However, how 
the material fits together into a functioning operating 
system is often not clear. 
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Over many semesters of teaching the first operating 
systems course I have developed a sequence of material 
covered early in the comae to address this problem. The 
course starts with two key concepts that establish the goal 
of the course and explain the basic machinery behind 
much of the functioning of the kernel. 

The first concept is that the goal of the course is 
to understand the abstraction defined by the system call 
interface and the software, the kernel, that implements that 
abstraction. The second concept is that a very concrete, 
non-magical, sequence of events based on the intermpt 
vector mechanism is the underpinning for the operation of 
the kernel. We have found that illustration using code 
from a real operating system kernel is an important aid in 
the student’s understanding these concepts. With these 
concepts understood, a framework has been provided 
which allows the remainder of the course to cover the 
traditional material more effectively. 

Precedents for these concepts can be found in 
recent operating systems textbooks [2,3]. Also, a recent 
paper [l] describes a sequence of programming 
assignments for the operating systems course in which the 
first assignment involves the use of UNIX system calls. 
Our proposal is distinctive, however, in the emphasis that 
we place on these two concepts and the extent to which we 
integrate the system call and interrupt vector material. The 
extent to which we integrate the other material in the 
course within the mework of these two concepts and the 
use of real code in a coordinated manner to reinforce these 
two concepts are further distinctions of our approach. 

In the next two Sections we describe the sequence 
of material being proposed. Section Two discusses the 
mate&I of the first concept: system caIls and the primary 
goal of the course. Once the system call interface is 
understood, there is a very natural organization of material 
that goes Corn the specific steps of executing a system call 
all the way through I/O devices. This development is 
outlined in Section Three as the second concept. Section 
Four reports on our experiences using this organization 
and how this material can be used to lead into the 
remainder of the course. We conclude in Section Five. 
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2 System Calls 

The first concept states that the set of system calls is an 
interface of an abstract machine and the kernel is the 
software that implements that interface. The primary goal 
of the course is identified as understanding this interface’s 
abstraction and the design issues in the kernel’s 
implementation. Identifying a primary goal for the course 
is important. It is true, for example, that the concurrency 
ideas covered in an operating systems course are not used 
only in kernel design. Moreover, a first operating systems 
course usually (and should) discuss distributed systems to 
some extent. However, presenting those aspects of the 
course as adjuncts to the central goal of understanding 
how the kernel on a single processor works helps the 
student maintain focus later in the semester when a large 
number of topics are encountered. 
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Figure 1: System Calls and Abstract Machines 

Figure 1 is the illustration used when describing 
the computer at run-time as layers of abstract machines. 
Each layer has its own interface and implementation: 
machine language for the hardware, system calls for the 
kernel, and library calls for the libraries. That alternative 
implementations of the same interface (e.g. both the 
MINIX and Version 6 UNIX kernels are implementations 
of the Version 6 UNIX system call interface) are possible 
is noted. The step shape formed by the rectangles is 
intentional and shows that the code of either a system 
program or an application program can contain lines that 
directly use any of the three levels. For example, the 
source line a = b + c; will translate to a machine 
instruction that does not involve the kernel or a library. 
The source line read(fd, buf, 10); will translate to a 
machirie instruction that calls a system call function. The 
source line tout << a; will translate to a machine 
instruction that will call a library function 

A key part of this first concept is understanding 
the system call interface. One approach is to provide a 
textial deicription of some generic set of system calls. The 
alternative that I have found more effective follows our 
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theme of using real code whenever possible. In particular 
we use examples from the MlNIX operating syslcm that 
was developed by Andrew Tanenbaum and described in 
his text Operating Systems: Design and Implementation 
[4]. MINX is an implementation of the Version 6 UNIX 
system call interface that runs on PCs as the native 
operating system. The Version 6 Unix system call interface 
is a good choice since it contains most of the well-known 
UNIX system calls, but is not as large as the system call 
interfaces of later versions of UNIX. 

2.1 Based on MlNlX Examples 

Part of the MINIX distribution includes a tests 
directory containing a set of short programs that cxercisc 
the system call interface. Tanenbaum included thcsc 
programs in the distribution so that developers could check 
for problems after booting a rebuilt kernel. We USC 
abbreviated versions of four of the tests to illustrate in a 
very concrete manner the version 6 UNIX system call 
interface. In the order that we present the programs to the 
students, the test programs are: 

Test 0. Illustrate basic file manipulation by a single 
process. Cover the open& close(), crcato, rcado, 
write& and Iseek system calls. 
Test 1. Illustrate forking a child process with the 
fork0 system call. The return value from the fork0 
call is used as the condition of an if statement to 
branch to the parent or child code both of which are in 
the initial process image. Also use the pipe& wait& 
and exit0 system calls for communication between the 
parent and child processes. 
Test 2. Illustrate use of the execveo system call for 
starting execution of another process image by the 
current process. Use in combination with the fork0 
system call so that the parent process waits and the 
child process calls execveo. Several versions of 
execveo are used to illustrate argv[] versus envp[] 
array passing. Also use the link0 and unlink0 system 
calls to illustrate that file clescriptors arc part of the 
environment passed to a forked child. 
Test 3. Illustrate use of signaling with the signal& 
kill& pause0 system calls. Use a signal handler and a 
forked child process. 

The original test programs ran on MINIX, but, 
after trivial changes they have been made to run on 
SunOS, Ultrix, and Linux machines (and should run on 
any POSIX-compatible operating system). After being 
shown the working test programs, the students’ 
understanding of the system call interface is reinforced by 
an assignment in which they write their own set of short 
programs that exercise the system calls. Five programs arc 



assigned (the assignments and solutions are available by 
contacting the author) as briefly described below. 

1. 

2. 

3, 

4. 

5. 

Have a parent process create a pipe and fork a child 
process, Have the parent read and the child write from 
the pipe. 
Have multiple uses of the fork0 and execveo system 
calls with complex arguments passed using argv. 
Demonstrate extensive file manipulation between a 
parent and forked child process. 
Use the titneo, signdO, and pause0 system calls and 
a signal handler for delaying a process. 
Show synchronization through extensive use of 
signals and signal handlers in both the parent and 
child processes including trying to ignore a signal 
using SIG-IGN. 

Note the analogy with a computer architecture and 
organization course, The students spend a considerable 
amount of time in such a course learning example 
instruction sets and writing short programs that use that 
instruction set. How the instruction set is implemented is 
then studied. Similarly, in an operating systems course the 
students need to understand a concrete system call set and 
write short programs that use that system call set. How the 
system call set is implemented by the kernel is then 
studied. 

2.2 Based on Man Pages 

A disadvantage of providing the students with complete, 
working example programs from the MINIX tests 
directory is that they are fairly similar to the assignment 
programs. To make the assignment programs more 
challenging, for the last hvo course offerings instead of the 
example programs I provided the students with UNIX man 
pages for all the relevant system calls plus a handout that 
contained some program fragments. Those program 
fragments were 1) which header files to include, 2) an 
example use of fork& 3) the syntax of the signal0 system 
call, 4) a fragment showing a signal handler and the 
associated signal system call, 5) a fragment showing some 
of the variants of the execveo system call and the argvfl 
and cnvp[J arrays, and 6) the prototype for the fimction 
main0 showing argc, argv[], and envpn. With this 
approach the students eqerience having to work from a 
system call interface specification. 

3 Interrupt Vectors 

The second concept can be expressed narrowly as: the 
kernel uses a single mechanism, the interrupt vector, at its 
lowest level for generating all exceptions including system 
call traps. The second concept can be expressed more 
broadly as: many of the features of an operating system 
(such as, system call execution, input/output, process 
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scheduling, and virtual memory) have as a key step the use 
of interrupt vectors. This set of features follows a natural 
order. The start of that ordering is the events that occur 
upon a system call invocation since the student has just 
studied the system call interface. Again, realistic code 
from MINIX is shown and traced to clarify the events. The 
end of the ordering is various specific device drivers and 
their relationships with the rest of the kernel. 

3.1 Libraries 

The first step introduces libraries as an archive file of 
object modules of fimctions that can be linked to a user 
program. A discussion of include files, static linking, and 
dynamic linking arises. The next step demonstrates that a 
library can provide through its set of functions an interface 
that a user program can use through function calls. Thus, 
the concept of an API (Application Programmers 
Interface) is introduced. As an example of real code the 
standard I/O library that is in the library libca is discussed 
as an API above the I/O system calls. In particular, the 
header file for the standard I/O library, stdio.h, and the 
file putcc containing the putc() function of the standard 
I/O library are shown. We note that the put@ code calls 
an I/O system call, mriteo. 

Knowing that the functions above the system calls 
can be made into interfaces through libraries leads us to 
how the system caI1 interface itself is defined through a 
library. In particular, each system call has a function by 
the same name in the library 1ibc.a. Thus, at compile-time 
a system call use in a user program simply causes the 
function by the same name in the library lihca to be 
linked. Understanding that the library mechanism is being 
used for both system calls and regular library functions is a 
key step in the student’s understanding of how a user 
program and the kernel interact. Again, code from libca 
is used as reinforcement; the libca files, c1ose.c and 
exeecc, for the close0 and execveo system calls, 
respectively, are shown. 

Next we consider the connection behveen the 
system call function in the library and control being passed 
to the kernel. The use of real code again is helpful. 
Execution is traced within libca from the c1ose.c and 
execc files to a cal1.c file and then to a sendrec.s 
assembly language file that saves registers, calls the trap 
instruction, and then (after the return from the trap) 
restores the registers and returns to the cal1.c file. A point 
made is that the system call invocation behaves to the user 
program like a regular function call with control 
eventually returning all the way to the statement in the 
user program after the system call invocation. 
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3.2 Hardware Support 

With attention focused on the trap instruction in the 
sendrec.s file we turn to the hardware support. The 
purposes of the Program Counter (PC) and Program Status 
Word (PSW) registers are reviewed. We reinforce that 
interrupt vectors exist in low memory and each vector has 
a PC and PSW value by examining the MINK code for 
boot time interrupt vector initialization. Discussion of the 
PSW naturally leads to a discussion of user and supervisor 
protection modes, how the protection mode changes, and 
what additional access rights supervisor protection mode 
allows. The effect of the trap instruction---saving of the 
old PC and PSW register values and loading of the new 
register values from the interrupt vector associated with 
the trap instruction---is then identified as the general 
action of the interrupt vector mechanism. 

That the new PC value is the address of an 

Initially we distinguish between synchronous 
exceptions, or traps, that are internal to the processor and 
asynchronous exceptions, or interrupts, which are due to 
events external to the processor. Traps, in turn, arc 
separated into those due to execution of the trap 
instruction and those due to an anomalous event. Such 
anomalous events in turn are separated into those that 
indicate a problem (such as a divide-by-zero error or an 
address translation generating a protection violation) and 
those that serve to notify the kernel of work that the 
hardware cannot do itself (such as an address translation 
generating a page fault). 

The processing done by the kernel for traps is 
discussed briefly (reference is made to the deeper 
discussion later in the course). Trap instructions cause the 
requested system call actions to be performed, Anomalous 
events that are problems usually cause the process to 
terminate. Anomalous events that are requests for the 
kernel to do something cause branching to kernel code 

Exceptions 

Initiated Instruction 

Errors (e. g. 
Divide-by-Z=-@ 

Need Kernel Help 
(e. g. Page Faults) 

I Figure 2: The Exception Taxonomy 

exception handler raises the distinction between the state 
saving done by the hardware and by the software. 
Examining the assembly language portion of the exception 
handler in MNX shows the large amount of context 
saving (such as register saving) that must be done in 
software. Examining this code helps make the concept of a 
context switch more concrete and shows that the cost of a 
context switch is nontrivial. The assembly portion at the 
end of the exception handler that restores the initial state 
and returns from the interrupt is also noted to show the 
steps in returning control to the library. 

3.3 Exceptions Taxonomy 

Two natural questions arise at this point. First: 
what happens between the two assembly language parts of 
the exception handler for saving and restoring context? 
Second: what are the other causes of transfer of control 
through an interrupt vector? We address these questions by 
introducing a taxonomy of all the types of exceptions (see 
Figure 2). 

(such as to a page fault handler) to perform that work. 

The interrupt class of exceptions raises the subject 
of the input/output subsystem. A general discussion of I/O 
begins with I/O hardware including buses, devices, and 
controllers. The associated kernel software, especially 
interrupt handlers and device drivers, is identified. The 
code from the MINX hard disk device driver illustrates 
the interaction between kernel device drivers and I/O 
controllers as well as the complex combination of 
programmed I/O and interrupt-driven I/O that is necessary 
in practical device drivers. Thus, the students set that the 
I/O device (actually its controller) interact with the 
processor and the kernel software at two levels. One lcvcl 
has the controller’s interrupts interacting with the 
processor’s interrupt vector mechanism and the kernel’s 
exception handler. The second and higher level has the 
controller’s data, control, and status registers interacting 
with the corresponding device driver in the kernel. 



The in-depth coverage of interrupt handling that 
the students have seen helps motivate hvo I/O devices with 
specialized functions: the DMA device and the clock. The 
usefulness of DMA devices is explained in conjunction 
with the discussion of the disk device driver. The DMA 
device offloads the word-by-word interrupt processing of a 
disk block read or write from the processor. The clock 
simply generates periodic interrupts that can be used by 
the kernel for timing measurements and in particular for 
quantum expiration. Quantum expiration, in turn, is used 
for preemptive, short-term process scheduling. Learning 
that preemptive, short-term process scheduling can cause 
concurrency problems naturally leads from this section of 
the course to the later section of the course on 
concurrency. 

4 Experiences 

The sequence of material described in this paper evolved 
during teaching the operating systems course nine times 
over an eight years. In a semester-length course the first 
four weeks is sufficient time to cover the material. We now 
highlight some points found by experience. 

Of all the system calls, students find the fork0 system 
call the hardest, particularly, the idea that there are 
two returns with different return values from the 
system call. The assembly language for the fork 
system call has separate instructions for the system 
call invocation, the store of the return value, and the 
branch on the return value. Seeing this assembly 
language students often find helpful since the 
assembly language makes clear what actions are done 
after the fork. 

Initial attempts at the assignment program on 
synchronization using signals can lead to the parent 
and child processes deadlocking. This deadlock can be 
used to motivate the deadlock problem when 
encountered later in the course. 

The exceptions taxonomy helps motivate and integrate 
the material covered later in the course. Memory 
management is touched on when discussing address 
translation traps for protection violations and page 
faults, Both process scheduling and one source of 
concurrency problems are touched on when discussing 
clock interrupts, quantum expirations, and their use in 
preemptive process scheduling. 

Illustrating the concepts discussed using carefully 
selected code from a real kernel is effective in making 
the material concrete. The next step in the student’s 
learning involves Programming assignments 
involving kernel modification. For that step our 
experience is that the best choice for the remainder of 
the course is to use a highquality kernel simulator 

such as NACHOS [2]. The alternative of modifying 
the native kernel of the machine (such as MINIX) is 
unattractive since debugging is more difficult and the 
kernel complexity makes many interesting 
assignments beyond the reach of students in a first 
operating systems course. 

5. An assembly language course precedes the operating 
systems course in our curriculum. I recently 
successfully tried moving the material described in 
this paper into the last four weeks of the earlier 
course. This provides a natural connection between 
the hvo courses and allows a more in-depth treatment 
of topics in the operating systems course. 

Conclusions 

It is important that the operating systems course have a 
welldefined focus, that it be clear how the different 
algorithms and policies discussed fit together into a kernel, 
and that the basic mechanisms underpinning the kernel be 
understood instead of being “magic”. We have described a 
sequence of material that can be used during the first part 
of au operating systems course to ensure that these 
objectives are achieved. The sequence of material has been 
outlined and our experiences in using this organization 
have been discussed. 

The outlined material is based on hvo concepts. 
First is the importance of the abstraction provided by the 
system call interface, that the kernel is the implementation 
of that interface, and the analogy with the instruction set 
interface the student has already encountered. Second is 
that the set of features centered about the interrupt vector 
mechanism underpins how the kernel functions and relates 
to many of the later topics in the course. Illustration 
through code from a real operating system kernel is a key 
feature of how this sequence makes clear the tictioning 
of the operating system. 
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