
From Sockets and RMI to Web Services
Mark A. Holliday, J. Traynham Houston, and E. Matthew Jones

Department of Mathematics and Computer Science
Western Carolina University

Cullowhee, NC 28723
01-828-227-3951

{holliday, thouston, emjones}@email.wcu.edu

ABSTRACT
Traditional coverage of network programming techniques in a
computer networking course addresses sockets, remote procedure
call, and object-oriented remote procedure call. We propose two
innovations to that coverage. The first is to emphasize the
historical development of those techniques as a sequence with
each technique evolving from the previous one. The second
innovation is to extend the historical development and the
techniques to the important current technique of web services.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client-server, distributed applications, distributed
databases, network operating systems.

General Terms
Design, Experimentation, Security, Standardization.

Keywords
Net-Centric Computing, Computer Science Education, Sockets,
Java Remote Method Invocation, Web Services.

1. INTRODUCTION
The Final Report on Computer Science Curricula of the Joint
Task Force [1] identifies Net-Centric Computing as one of the
top-level topics in the Computer Science Body of Knowledge.
There are excellent textbooks introducing computer networking
available. Consequently, our approach requires a computer
networking textbook [6] but to cover network programming and
distributed applications by a series of programming projects.

Our projects include detailed handouts to cover the needed
concepts. This past year we introduced a significant change in the
series of programming projects by adding a project involving web
services. How we introduce web services as an evolution from
other approaches to network programming is noteworthy and is
the subject of this paper. In prior work, Gagne [3] has also
reported a course that includes socket and RMI-based projects,
but not the historical evolution approach nor the extension to web
services. Interestingly, the more recent papers on integrating web

services have focused on CS1/CS2 [7] and on a first year graduate
course [4] instead of on the computer networking course.

In the next section we illustrate how the course teaches network
programming techniques as an historical evolution. Section Two
covers the historical sequence taught prior to this semester.
Section Three explains the programming projects we have
developed that follow that historical development. Section Four
explains how web services are a natural next step both in terms of
the historical development of network programming and in terms
of pedagogy. Section Five discusses the web services project and
the software infrastructure it requires. Section Six reports on our
experiences with that project. We conclude in Section Seven.

2. HISTORY
The historical development of network programming helps
explain the concepts for current approaches. We follow that
historical approach in our course and illustrate the highlights of
that course content in this section. A natural starting point is the
definition of a socket as a communication end-point in an Internet
Protocol-based network. The original definition of such a socket
for the Advanced Research Project Agency (ARPA) internetwork
was written in 1971 [9]. What is most relevant today is the
Berkeley Sockets application programmer interface (API) that was
introduced as part of the 4.2BSD UNIX operating system in 1983
[6]. Descendants of the Berkeley Sockets API have become the de
facto standard for operating systems that support access to the
Internet.

The original specification of that API required the C programming
language. However, versions of that API have been developed for
more modern programming languages. For example, the java.net
package of Java includes a version of the Berkeley Sockets API. It
is our experience that programs written using the Java version of
this API are simpler to write, easier to understand, and less likely
to have errors than programs written using the C version.

Inter-process communication across the Internet is primarily
based on versions of sockets. Therefore, the socket interface lies
at the juncture between a course on computer network protocols
and a course on using network programming to develop
distributed applications. As a reflection of the importance of this
transition, our networking textbook does include sections on Java-
based socket programming.

However, today’s role of socket programming is analogous to that
of assembly language programming in understanding the
operation of a single computer. Socket programming is important
in order to understand how Internet-based inter-process
communication works, but it is not the level at which programs
are developed typically. Instead, network programming is more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

mailto:emjones}@cs.wcu.edu

likely to be done at a higher-level that is compiled (using a stub
compiler) to a set of socket programs.

Figure 1: The Steps of a Remote Procedure Call.

That higher level evolved from the idea of a Remote Procedure
Call (RPC). A first version of RPC was proposed in 1976 as the
Procedure Call Protocol in RFC 707 [8]. Implementations of RPC
began appearing in the early and mid 1980s with the version from
Sun Microsystems being the most popular. RPC supplied two key
and important innovations. One, as the name suggests, is based on
the observation that many inter-process communication exchanges
form request-response pairs (that is, they are client-server
interactions). Such an exchange is analogous to the passing of
arguments upon invoking a procedure and the return of the return
value when that procedure invocation completes. Thus, if some
preliminary steps are taken (interface specification, stub
compilation, and linking of client and server stubs) the inter-
process communication across the Internet can be made to appear
similar to a regular procedure call. The 1984 paper by Birrell and
Nelson [2] is widely cited as a reference describing RPC as it is
understood today.

Figure 1 illustrates the basic steps in a remote procedure call. The
interface of the remote procedure is defined in an interface
definition language. A stub compiler generates a client stub and a
server stub from that interface. At link-time the linker links the
client stub with the client object file to create the client executable
and links the server stub with the service object file to create the
service executable. At run-time the user-written client code calls
the remote procedure which causes a call to the client stub. The
client stub translates the procedure call into a request and
response on a socket connection. The actions on the socket are
done by the client stub trapping to the client machine's operating

system kernel. The service machine does the reverse sequence of
steps from the kernel, to the service stub to the remote procedures
in the user-written service code. The remote procedure executes
generating a return value. The return value then retraces the above
steps back to the user-written client code.

Figure 2: The three parties involved in a remote procedure
call.

The second innovation added a level of indirection. Instead of the
client having to explicitly specify the location (IP address and
port) of the service, the client contacts a third party. The client
indicates to the third party the type of service sought; this is called
lookup or discovery. That third party returns the location of an
entity that provides that service. Thus, RPC forms a triangle
between the client, the third party, and the service. The service
registers (also called publishing or deploying) with the third party
and the client contacts the third party to find the location of the
service. This second innovation had been added to RPC by the
time of the Birrell and Nelson paper. As shown in Figure 2 this
third party was called the registry by Birrell and Nelson with the
service registering with the registry and the client doing a
“lookup” of the service at the registry.

By the early 1990s object-oriented versions of RPC began to
appear. For example, Microsoft's Distributed Component Object
Model (DCOM) was based on Microsoft RPC. Java, being an
object-oriented language, includes a version of RPC called
Remote Method Invocation (RMI) within the java.rmi package.
Figure 3 provides a timeline for the key events in the development
of network programming techniques described so far. Figure 3
also demonstrates the timeline for the network programming
technique of web services to be described later.

This historical review of network programming influenced us in
the design of the programming projects we have used prior to this
semester. We contend that the students seeing the historical
development of network programming helps them in several ways.

• Both the older and lower level socket programming and
the more modern object-oriented RPC should be taught
because both are in use today. The object-oriented RPC
is used explicitly and socket programming is used
implicitly, just as high-level languages and assembly
languages are used.

• The design choices and features of current network
programming techniques are to a large extent a result of

Registry

Client Service

register/
deploy/
publish

lookup/
discover

service request

service
response

return handleremote
procedure
call

Client
Machine

Service
Machine

service
process

client
process

stub

kernel

stub

kernel

remote
procedure

socket request
response

issues with the earlier techniques (For example, the
addition of a third party, the registry, as seen in the
1984 Birrell and Nelson paper, but not seen in the
original 1976 RFC 707 proposing a Procedure Call
Protocol.). Here the historical development aids in
understanding the more recent techniques.

• Much of what at first glance appear to be new ideas
today are in fact the same or similar ideas from several
decades ago.

Figure 3: A Timeline showing when each type of network
programming became significant. For sockets and RPC we

show the time from the original paper to the most influential
paper as white rectangles.

3. SOCKETS AND RMI PROJECTS
Prior to last year, two of the four programming projects in our
course were designed around the historical development described
above. Those two projects in order are:

1. a distributed chat client and server using sockets which
access Transmission Control Protocol (TCP) at the
transport layer.

2. a distributed chat client and server using Java RMI

The students are given the graphical user interface shown in
Figure 4 as the starting point for the chat client. The students
augment the graphical interface with two threads: one for the
notepad (for the user to enter messages) and one for the log (for
all messages entered by any user or generated by the chat server to
be displayed in chronological order). The students also must be
able to run multiple clients and to have clients running
simultaneously on multiple machines.

For the socket version the students also are required to implement
a multi-threaded chat server. The master thread of the chat server
upon a new connection from a notepad thread of a chat client
creates a new thread to service that connection. The new thread in
the chat server reads messages from the notepad and writes them
into a History data structure in the chat server. A continuously
running output thread in the chat server detects when a message is

added to the History data structure and writes that new message to
the log process in each chat client. The student must prevent race
conditions between the input threads and the output thread as they
access the History data structure and Users data structure by
adding synchronization.

Figure 4: A screenshot of the graphical interface the students
can use when developing their Chat projects.

An important feature of both the RMI and socket versions is that
the log process of the chat client is a service in the client-server
sense. Thus, the chat server is a server for the notepad of the chat
clients, but the chat server is also a client of the log of the chat
clients. Figure 5 illustrates this fact as well as the sequence of
messages exchanged in the RMI version.

The RMI version allows the students to experience for themselves
the issues involved in using stub compilation to create client and
server stubs, starting a registry, registering a service, and having a
client lookup a service in a registry and then invoke the service.

 Figure 5: The design and sequence of exchanged messages for
the Java RMI implementation of the Chat project.

4. WEB SERVICES
The reader has probably noted that our review of history stopped
in the mid-1990s with the widespread use of object-oriented

registry

notepad

log
server

chat
server

registry

registry

notepad

log
server

client 2

client 1

server (sol)

1

9

2

3

4

5

7

8

6

versions of RPC such as Java RMI. More than a decade has
passed and it is time that such a course continue the historical
progression by introducing a more current approach to network
programming while showing how it relates to the earlier
approaches.

The new approach is web services. Web services consist of a
broad set of specifications defined by the World Wide Web
Consortium [10]. Understanding all of its complexities would take
much more time than is available in one segment of one
undergraduate course. However, the most important basic aspects
of web services can be understood and used by students in such a
course if the course follows the historical development we have
outlined. As a result, the basic aspects of web services are seen as
a natural next step in this historical evolution. Many of the
concepts will already have been covered and the students will
have implemented software using those concepts in their previous
Chat projects.

The key insight in motivating web services occurred in the late
1990s: that object-oriented RPC approaches worked well, but they
were too difficult to deploy because they required features that
were not already available to everyone. Web services addressed
this difficulty in two ways.

• The web services data representation innovation was to
adopt XML (eXtensible Markup Language) for data
representation. Thus, the service registers itself with the
registry using a descriptor called a Web Services
Deployment Descriptor (WSDD). The service's WSDD
provides a brief description of the service using a
special XML schema. Also, the service provides the
information about the service needed by the stub
compiler to generate the client and server stubs using a
descriptor that is written in Web Services Description
Language (WSDL). WSDL is also defined using a
special XML schema.

• The web services network protocol innovation was to
layer the RPC on top of the application layer protocol
HTTP (HyperText Transfer Protocol) that is the basis for
the web (bindings to other lower layer protocols do also
exist). In particular, the RPC requests and responses are
contained within SOAP (Simple Object Access
Protocol) packets that are encapsulated by HTTP
packets. HTTP browsers and servers are ubiquitous.
Also, the use of HTTP addresses firewall limitations of
earlier RPC approaches because firewalls typically
allow HTTP packets through.

Web services fit naturally into our emphasis on historical
evolution. Initially, web services appear to be quite novel. This is
partly due to their surface appearance using XML syntax. It is also
partly due to changes in terminology. However, at a deeper level,
the key concept directly descends from the original RPC work in
the early 1980s. The concept of a service interface being used to
generate client and server stubs via a stub compiler still exists (see
Figure 1). Likewise, the concept of the triangle of the service, the
registry, and the client still exists (see Figure 2).

5. THE WEB SERVICES PROJECT
As with the earlier approaches to network programming, the
course lectures follow the content and format outlined in the
above section. Just as we developed versions of the Chat project

for the students to practice with socket programming and Java
RMI programming, we developed a version of the Chat project for
the students to practice web services programming.

The requirements for the Chat project are the same as those for the
RMI version except for one significant difference. Recall that the
chat client is divided into a notepad and a log. The notepad thread
is a client of the chat server in the client-server sense. However,
the log, though part of the chat client, is a server in the client-
server sense. Thus, the chat server is a server for the notepad, but
then acts as a client when interacting with each of the logs.

We decided that the extra complexity of having to deal with two
services was too difficult for the web services version.
Consequently, for the web services version we allowed the
students to implement the log using polling. In other words, the
log is implemented as a client in the client-server sense that runs
in an infinite loop that calls the chat server for new messages,
displays any new messages, and then performs a delay (using the
sleep method of the Thread class) before repeating.

After defining the requirements for the project, we introduced
what the students need to know to implement the project. Our
approach starts with a working example web service and
accompanying web client. The web service provides a generalized
HelloWorld service with four methods in the service interface
including methods that require multiple arguments and return
values. We go through the key files in the HelloWorld directory
structure. We then review the steps of running the HelloWorld
example.

We use the Apache Axis implementation of web services and for
that reason we show the directory structure used for a web service
in Apache Axis. There are only a few key top-level files:

• build.mappings
• namespace2package.mappings
• build.sh
• Hello.java
• services_HelloWorld.gar

The file build.sh is the shell script for creating a deployable
web service. It uses the build.mappings and
namespace2package.mappings configuration files and Hello.java
which is a Java interface file that satisfies the WSDL (Web
Services Description Language) requirements. The file
services_HelloWorld.gar is the output, the deployable version of
the web service.

There are three relevant subdirectories:
• clients/

o ChatProgram/HelloWorldClient.java
• schema/

o HelloWorld/HelloWorld.wsdl
• services/

o HelloWorld/deploy-server.wsdd
o HelloWorld/impl/HelloWorld.java

The client Java source file in the clients directory is interesting in
part because it contains the actual invocation of the remote
methods but also because it has the code for doing discovery (that
is, contacting the registry for a reference to the service). The
WSDL file in the schema directory is, in essence, the XML
equivalent of the Java interface for the service; it holds the
detailed information about the service that the stub compiler

needs in order to generate the client and server stubs (as in RMI,
the server stub is actually called a skeleton).

The service Java source file in the services directory is interesting
for what it does not have. It does have the method bodies for the
remote methods. However, unlike RMI, there is not a main
method that contains the code for registering the service. Instead
in our project the deployment is done manually as described
below. The Web Services Deployment Descriptor (WSDD) file in
the services directory is used during that deployment to provide
the registry with the information the registry needs.

As we go through the directory structure and examine the contents
of each file, we relate the approach to how the code appears in
RMI. The largest difference is the syntax for describing the brief
descriptor (WSDD) for deploying a web service and the more
detailed descriptor (WSDL) needed to generate the stubs for the
web service. So that is where we focus most of the class time.

The WSDL file serves the analogous role as the Java interface file
in RMI: it describes the interface of the remote methods at the
level needed by the stub compiler. That the two files are
analogous is not immediately apparent partly because of the XML
syntax of the WSDL file, but also because the terminology is
completely different. We have found especially helpful a table we
developed in our handout that maps each of the elements of a
WSDL specification to the corresponding syntactic feature of a
Java interface. For example, a WSDL PortType tag is equivalent
to the name of the complete Java interface.

After the survey of the directory structure, we go through the steps
of running the HelloWorld example in a live demonstration in
class: compiling the web service and web client, deploying the
web service, finding a free TCP port for the container (the term
for the registry) process to listen on, starting a container, running
multiple web clients concurrently on different machines, stopping
the container, and finally undeploying the web service.

At this point, the students are ready to use HelloWorld as a basis
for their Chat project. The configuration files need to be edited
and the WSDD and WSDL files need to be written using the
HelloWorld files as examples. The service source file needs to
modify the large amount of code for the RMI version of the chat
service to fit the format a web service. Instead of a single
command line client, as in HelloWorld, the students will need to
write two command line clients (for the notepad and the log) or
adapt the graphical user interface version of the RMI client.

6. EXPERIENCES
Based on their comments and questions and their performance on
the tests and projects, the students understood the lectures on the
historical development of concepts from sockets through web
services. The rate at which they successfully completed the web
services project was consistent with how well they did on the
sockets and the RMI versions of the chat project. The students
liked learning the more recent techniques. A number of the
students have shown their completed web services projects to
prospective employers as examples of their work.

The one concern that our experience has raised is the complexity
of the software infrastructure that the instructor needs to develop
and maintain in order to offer a project such as the web services
Chat project. That is another feature of the historical development
that we did not mention earlier: the software environment needed
to use the network programming techniques has become

increasingly complex. With sockets the only environment needed
is the library specific to your high-level language that converts
your socket call to a system call. With RMI the code for the client
and the service become much simpler, but in return a more
substantial environment is required. The trend continues with web
services. The environment needed for web services, Apache Axis,
is more complex than that needed for RMI.

7. CONCLUSIONS
In distributed applications, one of the most important current
approaches is web services. In this paper we have outlined how
we are doing that in a current course. The course integrates a
computer network protocol course with a course on network
programming techniques for developing distributed applications.
We argue that organizing the course’s content and programming
projects around the historical development of those techniques
offers a number of advantages. This paper explains how the
course does that including the novel extension to web services.

7. REFERENCES
[1] ACM/IEEE-CS, Final Report of the Joint ACM/IEEE-CS

Task Force on Computing Curricula 2001 for Computer
Science, 2001,
http://acm.org/education/curric_vols/cc2001.pdf.

[2] Birrell, A.D. And Nelson, B.J., Implementing Remote
Procedure Calls, ACM Transactions on Computer Systems,
vol. 2, issue 1, February 1984, pp. 39-59.

[3] Gagne, G., “To java.net and Beyond: Teaching Networking
Concepts Using the Java Networking API”, Proc. of the
Thirty-Third SIGCSE Technical Symposium of Computer
Science Education, Covington, KY, USA, February 2002.

[4] Humphrey, M., “Web Services as the Foundation for
Learning Complex Software System Development”, Proc. of
the Thirty-Fifth SIGCSE Technical Symposium of Computer
Science Education, Norfolk, VA, USA, February 2004.

[5] Kurose, J. and Ross, K., Computer Networking: A Top-
Down Approach Featuring the Internet, Third Edition,
Addison-Wesley, 2005.

[6] Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman,
J.S., The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison Wesley, 1989.

[7] Lim, B.B.L., Jon, C., and Mahatanankoon, P., “On
Integrating Web Services From the Ground Up Into
CS1/CS2,” Proc. of the Thirty-Sixth SIGCSE Technical
Symposium of Computer Science Education, St. Louis, MO,
USA, February 2002.

[8] White, J.E., A High-Level Framework for Network-Based
Resource Sharing, Request for Comment (RFC) 707, 1976,
http://tools.ietf.org/html/rfc707.

 [9] Winett, J.M., The Definition of a Socket, Request for
Comment (RFC) 147, 1971, http://tools.ietf.org/html/rfc147.

 [10] World Wide Web Consortium Web Services Activity,
http://www.w3.org/2002/ws/.

http://tools.ietf.org/html/rfc147

