

CS1 Assessment Using Memory Diagrams

Mark A. Holliday and David Luginbuhl
Department of Mathematics and Computer Science

Western Carolina University
Cullowhee, NC 28723
+1 (828) 227-3951

{holliday, drl}@cs.wcu.edu

ABSTRACT
Understanding the execution of an object-oriented program can be
a challenge for a student starting a CS1 course. We believe that a
type of diagram that we call a memory diagram can aid the
student in understanding object-oriented programming and can
assist the instructor in assessing the student’s understanding.

Memory diagrams focus on how, in an abstract sense, the memory
of the machine changes as the program executes. Though memory
diagrams are a simple idea, by careful use of shape and
placement, a number of key points about the meaning of a
program fragment can be conveyed visually. We have found a
correlation between a student’s ability to construct these diagrams
and that student’s comprehension of object-oriented concepts. We
feel that this correlation indicates that memory diagrams can be
used as an assessment technique that, in turn, can be used to
improve student learning.
Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented
Programming
D.3.3 [Programming Languages]: Language Constructs and
Features - Classes and Objects
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer Science Education

General Terms: Measurement, Languages

Keywords: Computer Science Education; Object-Oriented
Programming; Java; CS1; Memory Diagrams; Student
Assessment

1. INTRODUCTION
CS1 at our university provides an introduction to object-oriented
programming using Java, and assumes no prior programming
experience. We take an objects-first approach. We have been
successful in developing in a large majority of our students a
sound understanding of programming with objects. However,
reaching that point has required us to pay careful attention to
techniques that can help students develop an ability to work with

these abstractions. The technique we have found most helpful is a
diagramming technique that we developed called memory
diagrams [7, 8].

A memory diagram represents the state of objects in memory at a
particular point in the execution of a program. Thus, a series of
memory diagrams illustrates how the state of objects changes
during the execution of that code.

The fundamental advantage of memory diagrams is that they
provide a visual means for someone to describe the object-related
effects of each step of the execution of a code fragment. The
diagrams afford an alternative to the code itself, to pseudocode,
and to textual or verbal descriptions. From the instructor’s
perspective, memory diagrams provide an alternative for the
instructor to describe the meaning of certain language features and
their effect on execution. For students, memory diagrams provide
a means for understanding these features, particularly in code they
write themselves.

Consequently, a substantial component of our course involves
students drawing the sequence of memory diagrams representing
the execution of a particular code fragment. Sometimes the code
fragment is supplied by the instructor, but often it is a code
fragment that the student has written. The process of coming up
with the sequence of memory diagrams forces the student to more
deeply analyze what is happening in the code fragment.

Having the student draw the memory diagram not only helps the
student directly in learning the object-related concepts, it also aids
the instructor in assessment. In particular, the diagrams provide a
means of identifying what the student understands by a distinctly
different medium than merely examining the code that the student
has written. That assessment can then be used to help the student
correct specific misunderstandings that have been identified.

This paper addresses the effectiveness of memory diagrams as an
assessment technique in a CS1 with an emphasis on understanding
object-related concepts. Our diagrams were developed in the
context of teaching CS1 using Java, but they could easily be
adapted to other object-oriented languages. In section 2, we
present a brief introduction to memory diagrams. Section 3
illustrates how memory diagrams can be used in assessment.
Section 4 describes an evaluation of the effectiveness of memory
diagrams as an assessment technique. In section 5 we review
related work. We conclude in Section 6.

2. INTRODUCTION TO MEMORY
DIAGRAMS

In a related paper [7] we present memory diagrams in a systematic
and detailed manner. The lecture notes for our course use memory
diagrams extensively [8]. Due to space constraints we show one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

example in this section and outline the key concepts. The idea of
memory diagrams is that by careful use of shape and placement, a
number of key points about the meaning of a program fragment
can be conveyed visually. We assert that a beginning CS1 student
learns more effectively if we use different shapes for each type of
entity being modeled, thus the diagrams should represent each
type of entity with a clearly distinguishable shape.

We will use the following code fragment as an example. The
students are told that the Dog class has one String field called
name and one int field called age. This example is similar to a
final exam question we used in a recent semester.

 Dog spot; // diagram a)
 spot = new Dog("spot", 3);
 // right hand side is diagram b)
 // left hand side and equal sign is diagram c)
 String spotInfo = spot.toString());
 // right hand side is diagram d)
 // left hand side and equal sign is diagram e)

As indicated by the comments in the code the student is expected
to draw a series of figures. Requiring a series of memory
diagrams is important since it makes clear that the student
understands the execution sequence as well as what the final
result of the code fragment looks like. Figures 1, 2, and 3 below
show the diagrams a-d of the question (diagram e is not shown).

Variables, objects, and classes are three key types of entities and
each should have shapes as different as possible as an aid for the
beginning CS1 student. Our memory diagrams use rectangles for
variables, circles for objects, and diamonds for classes. The
representation of a class itself in a memory diagram occurs only in
the second half of our CS1 course because classes need to be
represented only when static fields and static methods are
introduced.

On a related note, entities that are fundamentally the same should
use the same shape as a visual hint to the student that they are the
same. In particular, local variables, formal parameters, and fields
are all variables. Thus, they are all represented as rectangles.

Placement also conveys information. Instance fields and methods
are drawn with the object of which they are part. Static fields and
methods are drawn with the diamond representing the class.
Private fields and methods are shown inside the object circle or
class diamond to suggest their inaccessibility from outside. Public
fields and methods are on the boundary of the object or class to
convey their accessibility from both inside and outside.

Diagram a) in Figure 1 displays the rectangle for the reference
variable only. This demonstrates that declaring a variable does not
create an object nor a reference. Diagram b) in Figure 1 involves
creating the instance of the Dog class. The student needs to show:
1) that he understands that the String “spot” is an object
referenced by the field name; 2) that name and age are instance
fields that are private and therefore inside the Dog object; 3) the
difference between a field holding a primitive type value and one
holding a reference; and 4) that a reference to the Dog object is
created as well as the Dog object. However, note that the
reference to the Dog object is not in the variable spot.

Diagram c) in Figure 2 is identical to diagram b) except that the
reference to the Dog object has now been assigned to the variable
spot. That a reference sometimes exists without being inside a
variable is conveyed by such a reference floating freely. To depict
that a reference that has been assigned to a variable is really inside
the variable, we emphasize that the arrow for such a reference
must start on the inside of the reference’s rectangle. This helps to
convey the fact that a variable can only hold at most one reference
at a time (since the reference is “inside” the rectangle).

References and method calls are both naturally drawn as arrows
but to distinguish between them, straight arrows are references
and wavy arrows are method calls. Method calls also have
parentheses and inside the parentheses appear any arguments that
are being passed (those arguments, in turn, are either references or
primitive type values). The method being called is shown as a
short straight line.

Diagram d) in Figure 3 shows a method call and the effect of the
method call. The double arrow points to the object and reference
created by the method call. The parentheses in the method call
would contain any arguments that are being passed. A key point is
that the method call creates a reference as well as a new String
object. In fact, that reference is the return value of the method
call. Being able to point to that return value reference in the
diagram helps make clear what is being returned.

Memory diagrams also use visualization to describe the difference
between primitive type variables and reference variables, the
meaning of pass-by-value semantics, the meaning of the this
reserved word, that multiple objects of the same class can exist
and each have their own copies of instance fields and methods,
that variables have names but objects do not, that multiple
variables may reference the same object, and that a reference
variable sometimes does not hold a reference at all (in which case
it holds the special value “null”) [7, 8].

spot

Dog

3
age

name

String

“ spot”

(a)

(b)
Figure 1: Creation of reference variables and objects

spot

spot

Dog

3
age

name

String

“ spot”

(c)
Figure 2: Assignment of a value to a reference variable

Memory diagrams help the student to understand how arrays are
implemented in Java. In particular, multidimensional arrays are
arrays of arrays. The diagrams make this clear with a circle
representing the Array object for the first dimension (the column)
as well as a circle for each Array object representing a row. Each
circle (object) has its own length field which makes clear why
ragged arrays are possible [7, 8].

3. USING DIAGRAMS TO MEASURE
STUDENT COMPREHENSION

One of the advantages of memory diagrams is that they help
precisely identify which programming concept a student is having
trouble with within a program fragment. We use the Dog class
example code fragment in Section 2 to illustrate how memory
diagrams can be used to measure student comprehension.

Diagram a) of the Dog example should display merely the
rectangle for the reference variable. The problem is that students
often think that the Dog object is also created by such a
declaration. This is a fundamental misunderstanding on the
students’ part that memory diagrams help us to detect. We are not
aware of another technique that so quickly and simply identifies
such a misunderstanding.

Diagram b) involves creating the instance of the Dog class,
indicating that it has two fields: name, which is a reference
variable pointing to a String object whose value is "spot", and
age, a primitive type variable that contains the integer value 3.
Diagram b) also shows the creation of a reference to the Dog
object. There are several common misunderstandings that can be
detected by having students draw this diagram. One is neglecting
to realize the creation of the reference (the arrow) to the Dog
object. A second common misconception is prematurely assigning
to the variable spot the reference to the Dog object (which should
be shown in diagram c)). A third mistake is failing to put
rectangles in the Dog object for the name field and the age field
(recall that a field is represented by a rectangle, since a field is a
variable). A fourth common error is forgetting that a String,
"spot", is an instance of a String object, which means that a circle
for that String object must be created and a reference to that
String object must be placed inside the name field of the Dog
object. A fifth common error is forgetting that the age field holds
the value 3 inside the variable instead of holding a reference to a
value 3 that is somewhere else.

Clearly, much is happening in the execution of the right-hand side
of the second statement. Of the mistakes listed above, the most
common are (1) not drawing a separate String object for “ spot” ,
and (2) not showing the fields name and age inside the Dog
object. Both mistakes indicate a lack of understanding of when
something is an object and how fields relate to objects.

Diagram c), representing assignment, involves placing the
reference to the Dog object inside the rectangle for the variable
named spot. The typical mistake is for the student to have already
done this as part of diagram b). This indicates that the student
does not understand how the assignment operator causes the
return value from the constructor call to be assigned.

Diagram d) is a method call that creates an object and returns a
reference. One misunderstanding is not realizing that a method is
associated with an object and, if public, is on the boundary of the
object's circle. A second error is not realizing that a new String
object is created, and furthermore, that a new reference to that
object is created. Examining the diagram allows the instructor to
assess whether the student has conquered the object-oriented
concepts related to these errors.

4. EVALUATION OF ASSESSMENT
EFFECTIVENESS

Our most common form of assessment using memory diagrams is
informally through class interaction. Much of the time in the
regular class sessions is spent doing in-class group exercises. As
each group demonstrates its work, students are often asked to
draw the memory diagrams associated with their solution to the
exercise. Similarly, during the weekly closed lab sessions, we
often ask students to demonstrate their understanding of the lab by
diagramming part of their solution. However, since we do not
maintain records on those interactions we can not evaluate the
effectiveness of memory diagrams during this informal
assessment.

To evaluate assessment effectiveness we conducted two studies
using questions on examinations normally given in the course of a
semester. The first study examined how well a student’s ability to
draw the memory diagrams for a program fragment as a test
question was an indicator of the student’s performance on the rest
of that test. The second study looked at how well a student’s
ability to draw the memory diagrams for a program fragment as a
test question was an indicator of the student’s performance on the
course overall.

For both studies we examined three separate test questions from
two separate CS1 classes. We will refer to these as Experiments 1
through III. Experiment I involved one section of our
introductory programming course that at the time of the
experiment had 13 students. The test question involved the
following code fragment

Dog spot;
spot = new Dog(“spot”);
System.out.println(spot.toString());
Experiments II and III involved a different section of that same
introductory programming course that at the time of the
experiments had 14 and 13 students, respectively. The second test
question was

spot

Dog

3
age

name

String

“ spot”

(d)

toString

String

“ (Dog: name=
“ spot” ;
age=3)”

()

Figure 3: Method invocation resulting in new object

String name = “John”; // diagram a
String state = “North Carolina”; // diagram b
name = name.concat(“Smith”); // diagram c
state = state.substring(6, 11); // diagram d

and the third test question was

Dog fido = new Dog(“setter”);
Dog anyDog = fido;
String dogInfo = fido.toString();

The sections were taught by different instructors. Both instructors
followed the same syllabus and both used memory diagrams
throughout the course. All three tests were in-class and included
approximately eight questions including the memory diagram
question. The tests were closed-book except for one question
(worth 30% of the test) that was open-book, done on the
computer, and completed after the rest of the test had been
submitted.

As an example, Figure 4 shows the data for Experiment III from
both studies. In other words, Figure 4 shows for each student in
one of the sections the normalized scores for the memory diagram
test question, the rest of the test, and the course. The students are
listed in the order of their scores on the memory diagram test
question.

Experiment Three for Both Studies

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Question

Rest of Test

Course

Figure 4: Experiment III scores for the memory diagram
question, the rest of that test, and for the course as a whole.

As shown in Figure 4 in Experiment III the mean values of the
scores for the memory diagram questions are significantly lower
than the overall test mean scores. This property was also observed
in Experiments I and II. This indicates that the students find
diagramming relatively difficult. This is consistent with the
conclusion that being able to correctly draw memory diagrams
requires the student to have a deep understanding of what is
happening in a code fragment. It is possible for a student with a
partial understanding to be able write correct code without
completely understanding the code. This is an advantage of
memory diagrams in that it alerts the instructor and the student
when the understanding is adequate for most measurement
techniques but is not complete.

In the first study there were three statistical tests, one for each
experiment. For those statistical tests the null hypothesis was:

H0: A student doing well on the memory diagram question does
not have a positive correlation with that student doing well on the
rest of the test.

The alternative hypothesis is:

Ha: A student doing well on the memory diagram question does
have a positive correlation with that student doing well on the rest
of the test.

The null and alternative hypotheses for the second study were
similar except that the comparison was with the student’ s score
for the entire course.

For both studies the statistical test for each experiment used the
Pearson product moment correlation coefficient as the test statistic
[9]. The value of the Pearson coefficient ranges from -1.0 to 1.0
and reflects the extent of a linear relationship between two data
sets. The closer the value is to 1.0 the more a positive correlation
exists. Given that the alternative hypothesis is for a positive
correlation, an upper-tail rejection region, RR = {z > za}, was
used.

The first row of values in Table 1 contains the values for the
correlation test statistic for the six experiments. The question is
whether for each experiment the value of the test statistic for that
experiment causes us to reject the null hypothesis and thus,
conclude that a positive correlation exists. Clearly this depends on
the size of the rejection region which in turn depends on the value
chosen for ��7KH�YDOXH� �LV�WKH�SUREDELOLW\�RI�D�7\SH�,�HUURU�DQG�
is called the significance level. A Type I error is made if the null
hypothesis is rejected when in fact the null hypothesis is true.

Table 1: Correlations and P-values (attained significance
level).

 Study One Experiments Study Two Experiments
 I II III I II III
Correlation .538 .781 .782 .534 .900 .632
p-value 0.025 <

�������
���

0.005
���

0.005
 0.025 <
�������

���
0.005

�������� ���
< 0.025

,QVWHDG� RI� FKRRVLQJ� DQ� DUELWUDU\� YDOXH� IRU� � ZH report what is
called the p-value or the attained significance level. The p-value is
WKH�VPDOOHVW� OHYHO�RI�VLJQLILFDQFH�� �� IRU�ZKLFK�WKH�REVHUYHG�GDWD�
indicates that the null hypothesis should be rejected. The second
row of values in Table 2 contains these p-values. Rather than
precise p-values we present ranges [9].

These p-values clearly indicate that the null hypothesis should be
rejected in all six experiments. In all the experiments the p-value
is less than the common guideline of 0.05. In fact for three of the
cases, the p-value is even less than 0.005. Thus, the alternative
hypothesis that a positive correlation exists is accepted.

The correlation results indicate that how well students can draw
memory diagrams does correlate with how well they understand
the course material as measured by the score on the rest of the test
and as measured by the score for the course. Thus, whether a
student is able to draw memory diagrams correctly appears to be
an indicator that an instructor can use to predict the student's
understanding of the programming concepts in general.

Correlation does not imply causality. We have not shown that
understanding memory diagrams causes students to do better in
overall programming understanding. A more detailed, formal
study would need to be conducted to answer that question.

5. RELATED WORK
Our paper introducing memory diagrams contains a detailed
review of work related to the topic of memory diagrams. There
we contrast them to algorithm animations [10, 13] and program

visualization tools [2, 5]. Neither of those is a diagrammatic
technique for visually representing the differences in language
features that occur in a program fragment. We also contrast
memory diagrams with Unified Modeling Language (UML) class
diagrams.

More closely related are other diagramming techniques that
involve the state of memory and are intended for introductory
programming courses. One example is the diagramming of linked
lists using ovals for the nodes and arrows for the pointers [3].
Another is state-of-memory diagrams [14]. The previous work has
tended not to develop this approach very extensively. In contrast
we feel that using diagramming techniques including shape and
placement can be used to convey a wide-range of language
features and precisely describe what is happening in a code
fragment using an alternative modality.

Moreover, in contrast to previous uses of diagramming in
introductory programming courses, we have investigated how the
diagrams can be used by students as well as by the instructor and
consequently can be used for assessment of student
comprehension.

With respect to assessment in the introductory programming
courses, much of the literature has addressed automating
assessment [12]. But there does not appear to be much research
into having students create abstract representations in order to
assess comprehension of object-oriented programming concepts.
[1] is an assessment of the correlation of student success in
different types of student work (such as, closed labs versus tests).
[6] is an evaluation of the effectiveness of a diagramming
technique in improving program comprehensibility. However, the
diagrams they consider reflect control structure, not object-
oriented language features. Finally, the effectiveness of visual
representations in helping to understand text has also been studied
in fields other than computer science [4]

6. SUMMARY
The level of abstraction present at the start of a CS1 course
teaching an object-oriented language in an objects early approach
can prove to be a challenge for many students. Our experience is
that if the students can diagram what is happening in memory as a
fragment of object-oriented code executes, they can more easily
and more deeply understand the meaning of that program
fragment. Such memory diagrams represent memory in an
abstract sense. By use of different shapes for different entities and
by careful use of placement the student can employ the diagrams
to visualize a significant amount of the meaning of the effect of
the execution of a program fragment.

In this paper we evaluate how well having students construct
these diagrams can serve as an assessment tool. The memory
diagram test questions that we have examined indicate that there
is a correlation between how well students construct these
diagrams and how well they perform on the rest of the test and in
the course as a whole.

This study could be extended in several ways. For example, one
could develop test questions that require a student to both write a
code fragment or small program and to draw the memory
diagrams for some of the statements. Such questions would allow
us to examine the correlation between correct memory diagrams
and level of understanding of the specific programming concept
that the diagram is representing. This is in contrast to the

correlation between correct memory diagrams and the level of
more general programming understanding (as reflected in an
overall test score).

Another subject requiring further study is causality. To what
extent does learning to construct correct diagrams cause a student
to have a better understanding of the corresponding programming
concept? Such a study probably would require dividing the
students into two groups with one of the groups not being taught
memory diagrams and then comparing their success in
understanding the programming concept to that of the second
group of students.

7. REFERENCES
[1] Chamillard, A.T. And Braun, Kim A., Evaluating

Programming Ability in an Introductory Computer Science
Course, Proc. of SIGCSE 2000, pp. 212-216.

[2] Dershem, H.L. And Vanderhyde, J., Java Class Visualization
for Teaching Object-Oriented Concepts, Proc. of SIGCSE
1998, pp. 53-57.

[3] Dershem, H. and McFall, R., Animation of Java Linked Lists,
Proc. of SIGCSE 2002, pp. 53-57.

[4] Goolkasian, Paula, Picture-Word Differences in a Sentence
Verification Task, Memory & Cognition, 1996, 24, pp. 584-
594.

[5] Haddad, H. Curtis, E. and Brage, J. Visual Illustration of
Object-Orientation: A Tool for Teaching Object-Oriented
Concepts, The Journal of Computing in Small Colleges, 12,
2, (Nov. 1996), 83-93.

[6] Hendrix, T. Dean, McKinney, Matthew, Maghsoodloo,
Saeed, and Cross, James, Do Visualizations Improve
Program Comprehensibilty? Experiments with Control
Structure Diagrams for Java, Proc. of SIGCSE 2000, pp.
382-386.

[7] Holliday, M. and Luginbuhl, D., Using Memory Diagrams
When Teaching a Java-Based CS1, Proc. of the 41st Annual
ACM Southeast Conference, pages 376-381, Savannah, GA,
March 2003.

[8] Holliday, M., “ Introducing Java Visually” ,
http://cs.wcu.edu/~holliday/LectureNotes/150/, 2002.

[9] Mendenhall, W., Wackerly, D.D. and Schaeffer, R.L.,
Mathematical Statistics with Applications, Sixth Edition,
Duxbury Publishing, 2001.

[10] Naps, T.L., Eagan, J.R., Norton, L.L., JHAVÉ--An
Environment to Actively Engage Students in Web-based
Algorithm Visualizations, Proc. of SIGCSE 2000, pp. 109-
113.

[11] Riley, D. The Object of Java, Addison Wesley, 2002.

[12] Satratzemi, R., Dagdilelis, V., and Evagelidis, G. A System
for Program Visualization and Problem-Solving Path
Assessment of Novice Programmers. Proc. of ITiCSE 2001,
pp. 137-140.

[13] Stern, L. and Naish, L., Visual Representations for Recursive
Algorithms, Proc. of SIGCSE 2002, pp. 196-200.

[14] Wu, C. T. An Introduction to Object-Oriented Programming
with Java, McGraw-Hill, 2001.

