
CS261 Project - Sensor Network Programming for
“Dummies”

Mark Hempstead
Division of Engineering and Applied Sciences

Harvard University

mhempste@eecs.harvard.edu

Abstract
Although, the ultimate goal of WSNs is to place powerful data col-
lection and analysis capability in the hands of scientists, current
programming environments are cumbersome often requiring some-
one with a PhD in computer science in order to construct a basic
program. Our research group is currently developing a next gen-
eration system-on-chip (SoC) for wireless sensor network applica-
tions. Therefore, this work proposes a graphical and modular pro-
graming environment for sensor network applications on the Har-
vard Ultra Low Power Event Driven Architecture.

The proposed system provides a set of parameterizable macros
that the user can connect together to define an application. The
back-end of our system uses the connection information to piece
define correct interrupt-service routines (ISR) routines. This macro
method allows us to use the Hardware features of our system such
as hardware acceleration and application level power management.
Our SoC is currently in the circuit design phase and we plan to
complete the implementation of our programing system by the time
parts return from IBM.

1 Introduction
Wireless sensor networks (WSNs) are poised to transform
the way society interacts with the physical world, driven
by an explosion of systems research in sensor networks.
Sensor networks have been proposed and deployed for a
wide variety of applications such as habitat monitoring, and
emergency medical response. Many industry and academic
groups are currently developing hardware for the next gener-
ation of sensor network nodes which will be extremely low
power with additional functionality. Although, the ultimate
goal of WSNs is to place powerful data collection and anal-
ysis capability in the hands of scientists, current program-
ming environments are cumbersome. Steven Glaser, a struc-
tural engineer who has deployed sensor networks to study the
strength of structures, sums up the problems of sensor net-
work programing quite well: “It is our opinion that a scientist
or engineer who wants to use wireless sensor node technol-
ogy should not have to earn a Computer Science Ph.D. in or-
der to do so.[1]” Prof. Glaser expresses the frustration shared
by many in the scientific community that wireless sensor net-
works should be used as a tool by scientists without requiring
the support of several computer science graduate students.

This work proposes a graphical and modular programing en-
vironment for basic sensor network monitoring applications
with the goal of placing the power of WSNs in the hands of
the scientists.

There is an ulterior motive to the development of the
graphical programing interface; my group is currently de-
veloping a system-on-chip (SoC) for sensor network appli-
cations and we would like to make it easy for researchers
to use our platform[3]. Our hardware architecture supports
the notion of event processing in hardware, includes mem-
ory mapped hardware accelerators, and supports fine-grained
power management at the application level. We would like
to be able to hide the details of the hardware accelerator pro-
graming from the user and provide a clear parameterizable
interface for programing the system. The goal of this project
is to provide a way for a technical person (but not a CS PhD)
to quickly create a sensor network application for our plat-
form in an intuitive manner. In the future we hope to port our
programming environment to other sensor network applica-
tions.

The proposed system provides a set of parameterizable
macros that the user can connect together to define an ap-
plication. The back-end of our system uses the connection
information to piece define correct interrupt-service routines
(ISRs). This macro method allows us to use the Hardware
features of our system such as hardware acceleration and ap-
plication level power management. Our SoC is currently in
the circuit design phase and we plan to complete the imple-
mentation of our programing system by the time parts return
from IBM.

The organization of the paper is as follows: Section 2 pro-
vides an overview of our hardware architecture that this sys-
tem is being developed for and an overview of related pro-
graming systems. Section 3 details the requirements of the
system and describes why porting TinyOS is not optimal for
our system. Section 4 describes the design of both the user
interface of our system and the backend specific to our hard-
ware architecture.

1



2 Related Work
This section describes some of the related and background
work for this project. First we discuss the details of our
event-driven platform and then discuss other related projects.

2.1 Harvard ULP Architecture
2.1.1 Architectural Motivation and Goals

Our system employs an event driven architecture designed
for the regular nature of sensor network applications. The
general-purpose microcontroller spends most of the time in a
low power state only awaking to handle irregular events such
as system reprogramming. The event processor, a small state
machine, handles all system interrupts and transfers data be-
tween modularized slave components. Keeping the above
discussion in mind, we summarize our architectural design
goals.

1. Event-Driven Computation:We seek to eliminate un-
necessary event-processing overhead by building a true
event-driven hardware platform.

2. Hardware Acceleration to Improve Performance and
Power: Our aim is to build a system composed of sev-
eral components that are optimized for specific tasks.
The intuition that drives this goal is that it is better to
split the functionality of the system into several small
components, each of which can be micro-managed for
lower power consumption, as opposed to a monolithic
computing engine that does not provide knobs for fine-
grained power management.

3. Exploiting Regularity of Operations within an Appli-
cation: We expect that specific hardware components
will be able to handle regular events in an applica-
tion input stream, thus avoiding the use of the general-
purpose components, and minimizing energy con-
sumption. Since irregular events occur infrequently,
the penalty for using the general-purpose components
of the system is justifiable.

4. Optimization for a Particular Class of Applications:
Our architectural innovations aim to optimize the
common-case behavior of monitoring applications for
low-power, while still providing general-purpose pro-
cessing capability for a broader class of applications.

5. Modularity: The system that we propose to build must
be modular to allow different sets of hardware compo-
nents to be combined into a larger system that is best
suited to a particular type of application. A modular
system architecture is easily extensible.

6. Fine-grained Power Management Based on Computa-
tional Requirements:One of the main themes driving
our design is the possibility of configuring resource
usage (for lower power consumption) of the sensor

Power lines for 
Memory Segments 

Memory

uController
General 

Processing
(Irregular Events)

P
O

W
ER

 C
O

N
TR

O
L

D
A

TA

A
D

D
R

E
S

S

IN
TE

R
R

U
P

T

Event
Processor

Interrupt 
Processing Power 

Management
(Regular Events)

U
nhandled Interrupts

Power Enable Lines

Off Chip Components 
(for this Version)

Off Chip Bus 
SignalsTester Ctrl 

Signals

VDD for 
Tester

Bus Signals

Bus Signals

Interrupt to 
Process

Figure 1:Block Diagram of System Architecture

network devices on-the-fly according to computational
demands. Fine-grained power management support at
the architecture allows the designer to use advanced
circuit tricks (such as VDD gating) to future decrease
leakage current.

2.1.2 Architecture Description

The system architecture is illustrated in Figure 1. There are
two distinct divisions within the system in terms of the ability
of the component to control the system bus. We refer to the
components that have full control of the system address lines
asmastercomponents and the remaining blocks that do not
facilitate transfers on the databus asslavecomponents. The
system bus has three components – an interrupt bus, a data
bus, and power control lines. The slaves respond to read
or write requests from the master side of the data bus, thus
allowing the masters to read information content and control
execution of the slaves. The two master devices consist of a
general-purpose microcontroller and a small state machine,
the event processor.

A key benefit of the modular design of our architecture is
the ability to employ fine-grained power management of in-
dividual components (both masters and slaves). Selectively
turning-off components, using VDD-gating, allows us min-

2



imize leakage power. For example, the general-purpose mi-
crocontroller core could be relatively complex and power-
hungry when active, but can be VDD-gated most of the time
when idling. The event processor handles all interrupts, dis-
tributes tasks to slave devices, and wakes up the microcon-
troller only when necessary (rarely). A more detailed archi-
tecture description is available[3].

2.1.3 Implications for the Graphical Programing Sys-
tem

The event driven architecture describe provides significant
hardware support for various tasks therefore it is important
that the programing system provide abstractions to aid the
user at the same time retaining the power of the architecture.
It is important that the user be able to utilize the hardware
accelerators without knowledge of the specific memory ad-
dresses or required configuration bits. At the same time the
user should be able to make power management decisions at
the block level to maintain the energy efficiency of our hard-
ware system.

2.2 Other Related Systems

Several researchers have looked in to ways of program-
ing sensor network systems and graphical programing tech-
niques. This section details some of those approaches. Our
proposed programming system will be unique because not
only does it provide graphical programming for wireless sen-
sor networks but it also will support the new Harvard ULP
architecture.

2.2.1 Graphical Programing Systems

Many scientists use LabVIEW from National Instruments as
a graphical development platform[7]. LabVIEW provides
the flexibility of the programming language and includes
specific tools for typical measurement and testing applica-
tions. The web documentation for LabVIEW indicates that
it can be used to develop software for various platforms (even
sensor networks). However, we have not heard of a success-
ful deployment using LabVIEW, clearly more research is re-
quired.

Over the years many researchers have investigated graph-
ical programing languages and systems. Marian Petre pro-
vides a good overview of these systems and points out
that graphical systems are not better just because they are
graphic. Instead it is the secondary clues that represent rela-
tionships between components in the system that provide the
true power of graphical programming[8].

2.2.2 Programing Wireless Sensor Networks

Researchers at Harvard University are working on high level
languages for sensor network programing and have coined
the term “Macroprogramming”[6]. This group looks to se-
lect certain regions of the sensor network for programming
and hides low level details from the user. This work is not
yet available for consumption by the scientific community.

It also isn’t clear if these abstractions will allow for the fine-
grained power management and control available on the Har-
vard ULP architecture.

Members of the TinyOS[4] Community have developed
graphical simulation and debugging tools. PowerTOSSIM is
a simulator for TinyOS based applications with the ability to
estimate the power consumption of notes[9]. TinyDB is an
application which allows the user to query the network and
task sensors to collect data[5]. TinyDB requires significant
overhead to operate but it does provide an easy to use SQL
style interface for programming. However, TinyDB requires
significant hardware resources so it cannot be ported to the
Harvard ULP architecture. SNACK is a kit for creating sen-
sor network applications by importing applications written
for TinyOS[2]. The next section provides a detailed discus-
sion on why TinyOS is not a suitable building block for our
programming system.

3 System Requirements
3.1 System Goals
Our wireless sensor network programming system has two
main goals. First, the frontend of the system must be easy
to use. We want to place the power of WSNs in the hands
of non-computer scientist researchers. Second, without the
user’s knowledge the system produces correct and efficient
code that is optimized for our hardware platform. It is im-
portant that the system does not create abstractions which
hide the power of the architecture. Therefore the system can
be split into two distinct parts - the frontend that provides the
user interface, and the backend which transforms the user in-
put from the frontend into architecture optimized code.

User Interface / Frontend Requirements:

• Simple to Use- Must be accessible to the average tech-
nical user who has limited programing experience.

• Supports monitoring application class- To restrict the
complexity of the system we focus on the class of
WSN applications for which hardware was designed.
Characteristically monitoring applications have low
throughput requirements, long deployment lifetimes
(years to decades), and minimal real-time require-
ments.

• Hides hardware complexity- Our hardware architec-
ture uses a memory mapped interface for the majority
of operations. The user should no have to know the
memory addresses of the components, the hex repre-
sentation of control words or even the instruction set
architecture (ISA) of the Event Processor.

• Allow use of advanced architecture features- supports
application level power management, hardware accel-
eration, and thread differentiation.

3



• Extensible and scalable- can add new features as the
hardware changes or algorithms change.

The most important requirement of the frontend is to be
able to pass information to the backend. The backend is
responsible for converting the user input into a binary exe-
cutable optimized for the target hardware platform.

Backend Requirements:

• Generates good code that uses the advanced features
of the architecture- The frontend does not hide the ar-
chitecture features from the user therefore the backend
must correctly implement these features efficiently.

• Maps to correct memory addresses- the backend needs
to handle all address mapping that was hidden from the
users.

• Catch stupid errors- the backend must warn the user
if he/she has exceeded the capability of the hardware
such as using more hardware timers then available.

• Extensible and scalable- can add new components and
memory maps as the underlying hardware changes.

Once the goals of the system were defined we looked to
see whether already established systems can fulfill our de-
sign requirements.

3.2 Why Not TinyOS?
TinyOS, a software component library for sensor network
applications, is used extensively by the systems research
community[4]. TinyOS has a large user base with over a hun-
dred different organizations using the platform for research.
TinyOS has been ported to several different hardware plat-
forms. The description language NesC is used to connect
together different software and hardware components cre-
ating the full application in C which is then compiled us-
ing GCC for the underlying hardware. We have found that
while TinyOS a mature development platform it would not
be portable to our hardware architecture and does not meet
several of our design goals.

Our hardware platform is fundamentally very different
from the traditional general purpose microcontrollers that are
the building blocks for current WSN hardware designs. In-
stead of one processor our architecture incorporates two dis-
tinct master components, the microcontroller and the event
processor, as well as many slave hardware accelerators. The
operating system must transfer the necessary data to this het-
erogeneous collection of hardware components. The oper-
ating system must also select the Event Processor or micro-
controller depending on the task. TinyOS and the tools that
support it, such GCC and NesC, would need to be ported to
support heterogeneous processors and non-unified memory
access.

Language modifications would also be required to sup-
port the advanced features of our architecture. TinyOS still
does not provide adequate power management facilities and
would not be able to support the fine-grained application
level power management features that give our architecture
its power efficiency.

Even if TinyOS, GCC, and NesC were completely rewrit-
ten to support our SoC, TinyOS would still not fulfill our
primary goal of ease of use. When Steven Glaser, said “It
is our opinion that a scientist or engineer who wants to use
wireless sensor node technology should not have to earn a
Computer Science Ph.D. in order to do so”, he had just fin-
ished deploying a network using TinyOS. While many im-
provements have been made to TinyOS which improve its
usability it still primarily a platform for systems researchers
- its primary goal is not to be user friendly.

4 Design
In a typical sensor network system the flow of data is the
primary concern. Different logical units generate data such
as sensors, while other units such as filters manipulate data.
We model the application as a series of data flows between
logical blocks. A data manipulation in our system is mod-
eled as a module with a defined set of inputs, outputs and
parameters. When data needs to be passed between modules
an interrupt service routine (ISR) is required. These ISRs are
modeled by the connections between modules.

The conflicting goals of usability and hardware optimize
code limits our approach and the flexibility of the system.
The system needs to easily generate efficient code. To
achieve this goal we provide the user is provided with a set
of parameterizable macros in the frontend interface. The
backend is supplied code stubs which it connects together
for form complete interrupt service routines. This section
presents the design of the frontend and backend modules and
shows how the system is designed to be extensible and scal-
able.

4.1 Macros Explained
The macro is the basic building block in our system. A macro
can represent a specific hardware slave component in our
system or it can represent routine written for the general pur-
pose microcontroller. A library of macros will be provided
to the user. The system is designed so that macros can be
easily added. In our system we model two different types of
macros, the flow generator macro and the data manipulation
macro.

A flow generator macro is either a periodic element such
as a timer or an external event such as an incoming radio
message. Flow generators do not have any input connections
but can have multiple outputs.

Data manipulation macros have one input and can have
multiple outputs. Examples include: data filters, message
processors, radios, and sensors. A data manipulation macro
can also be custom code written for the general purpose mi-
crocontroller.

4



Properties - Collect SampleProperties - Collect Sample
Temperature

(Number of Samples to Queue)

Notify When ReadyManage Power

More Info

Save Cancel

Properties – Prepare MesageProperties – Prepare Mesage

Manage Power

More Info

Save Cancel

(Destination)
(Mesg Type)

Figure 2: Front End GUI Design Simple Sense Application. A
timer is fired, a sample is taken and a message sent. Shows how
dialog boxes will open to parameterize blocks.

Each macro is parameterizable. The parameters depend
on the description of the operation and the underlying hard-
ware support. For example a macro called “collect sample”
is used to gather data from the sensors. Depending on the
application a user might want to select the sensor type (tem-
perature, acceleration etc..) and how many samples should
be taken at once. A flow generator macro that models the
timer might allow the user to specify the timer period. By
requiring that macros have specific inputs and parameters it
is possible to create efficient building blocks.

4.2 Frontend Design
The frontend of the system will be implemented as a graph-
ical user interface (GUI) with macros available as a library
of icons. The user can click on a macro to bring up a dia-
log box containing the macro parameters. Figure 2 presents
a conceptual view of the frontend GUI. The application ex-

ample is simple but representative of many monitoring appli-
cations. The triangle represents a flow generator component
in this case a timer. Once the timer fires a sensor sample
is collected an example dialog box is included for the “col-
lect sample” macro. Besides the obvious parameters there is
one checkbox to enable power management - by providing
this checkbox the user has access to an advanced architec-
ture feature. Data is then passed to the filter, a message is
prepared and then sent on its way.

In this application example only one of the component
outputs were used, but it is possible to create branches in
the data flow depending on the result of a data manipulation
component. The user is able to create a more complex appli-
cation by outlining multiple dataflows. We are currently de-
signing architecture support for thread differentiation which
would avoid contention between separate flows.

4.3 Backend Design
The backend of the system takes connection information pro-
vided from the frontend GUI and pieces together the appro-
priate ISRs. For each macro the backend is provided with a
set of instruction stubs for tasks such as power management,
component configuration, and data transfer. This section ex-
plains how routines are created by the backend and how a
binary is created.

4.3.1 ISR Routine construction

Each connection between macros corresponds to an ISR rou-
tine, each ISR routine is made up of a set of Event Processor
assembly code stubs. Figure 3 shows how an assembly stubs
are tied together to make an ISR routine for either a data ma-
nipulation macro or a flow generator macro. The backend
is provided with each of the different stub types for every
macro it supports.

The ISR routine is called when the interrupt of the source
macro is fired. For a data manipulation macro, the first step
is to turn on the destination hardware block using the Event
Processor’s SWITCHON instruction. The next stub is used
to write initial configuration to the hardware block - this of-
ten includes any parameters that were specified by the user.
The next stub is used to transfer state from the source macro
to the destination macro. An example would be a sensor
reading, or message packet. Now that state has been trans-
fered the source hardware block can be powered off - de-
pending on if the user has enabled power management as a
parameter. Finally there is an assembly stub that writes the
appropriate control words causing the block to begin execut-
ing the operation.

Flow generator macros are initialized at system boot and
only require a smaller number subset of assembly stubs.
Figure 3-(b) presents the routine framework with the actual
Event Processor assembly code required to initiate the timer
component included as an example. First the timer is pow-
ered on with the SWITCHON instruction. Then the configu-
ration control words are written to the timer such as specify-
ing the timer period. Finally a control word is written to the

5



ISR for Source Component’s Interrupt

Switch On Stub

Initial Configuration

Transfer

Switch Off

Execute

Depends On Destination Macro

Depends On Destination Macro

Depends On Both Macros

Depends On Source Macro

Depends On Destination Macro

Startup Code

Switch On Stub

Initial Configuration

Execute/Startup

SWITCHON <TIMER>

WRITEI <Timer Period> <TIMER>

WRITEI <ctrl word> <TIMER>

(a) Data Manipulation Macro (b) Flow Generator Macro - Timer

Figure 3: Creating an ISR Routine from Using Assembly StubsUsing the connection map and the a set of assemble stubs for a given
macro the appropriate ISR routine for a given connection is pieced together.

timer causing it to begin counting.
The backend is also responsible for checking the program

construction provided by the user for basic errors. These er-
rors could include incomplete connections or using too many
flow generator units.

4.3.2 Creating the Final Binary

Figure 4 presents a summary of the complete application de-
velopment flow. The user lays out the application with the
front end interface. The backend is responsible for merging
together the macro components to create ISR routines. The
assembly code is passed to a hardware specific assembler
that resolves labels and generates a complete binary from as-
sembly code.

4.4 System Scalability and Extensibility

Our design approach with its macro building blocks does not
have the flexibility of a high level language such as C. There-
fore the programming system architecture allows for macro
libraries to be easily added to the system. Figure 5 presents
the architecture of the system which is similar to the archi-
tecture employed by the CAD tools used in the VLSI com-
munity. The frontend and backend are designed to be hard-
ware independent and accept library files which are written
in a standard format. These libraries could be designed by
the hardware vendor or by a third party vendor within the
community.

The frontend accepts afrontviewof a macro which is a
library file that describes the inputs, outputs, and parameters
of a block. Documentation could also be attached to a front
view. Our application frontend uses this library to display
macro icons and dialog boxes to the user. The frontend then
provides a standard component map file which describes the
connections between the macro blocks. A separate parame-
ters file is also passed to the backend.

The error checker unit of the backend accepts a hardware
specific constraints file. This file describes any particular
limitations of the target hardware platform.

Each macro library frontview has a correspondingback-
view library. This library contains the assembly stubs de-

scribed in section 4.3.1. Using the component map and pa-
rameters files the backend will piece together the appropriate
ISR routines. The resulting assembly code will be passed to
a hardware specific assembler.

5 Conclusion and Future Work
This work presented a design a programming system for
sensor network applications which provides ease of use and
hardware specific code for the Harvard Event Driven archi-
tecture. To achieve our design goals we provide the user
with a set of parameterizable macros for typical sensor net-
work tasks. The macros are provided to the program through
a standard library interface to ensure extensibility and scala-
bility.

We are currently in the circuit design phase of our SoC
design. The design team is currently time limited due to the
tapeout deadline. The final programing system will be com-
pleted by the time parts return from IBM.

References
[1] S. D. Glaser. Some real-world applications of wireless sen-

sor nodes. InProc. SPIE Symposium on Smart Structures and
Materials, March 2004.

[2] B. Greenstein, E. Kohler, and D. Estrin. A sensor network ap-
plication construction kit (snack). InSenSys, November 2004.

[3] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and
D. Brooks. An ultra low power system architecture for sen-
sor network applications. InIn The 32nd Annual International
Symposium on Computer Architecture (ISCA), June 2005.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. InArchitectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Net-
works. InProc. the 5th OSDI, December 2002.

[6] Matt Welsh. Macroprogramming Myriads of Sensors.http:
//www.eecs.harvard.edu/˜mdw/proj/mp/ .

[7] National Instruments. LabVIEW.http://www.ni.com/
labview/ .

[8] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. InCommunications of the ACM,
June 1995.

6



Figure 4: Application Development ProcessAn application is
first described by connecting components. Then the design is
checked and ISR routines are created by piecing together the macro
blocks. Finally the assembly code is layed out, linked and assem-
bled in memory.

Figure 5:Programing System ArchitectureThe system is made
up of hardware independent tools which take hardware dependent
libraries as inputs. The output is then created by a hardware spe-
cific assembler.

[9] V. Shnayder, M. Hempstead, B.-R. Chen, G. W. Allen, and
M. Welsh. Simulating the Power Consumption of LargeScale
Sensor Network Applications. InProceedings of the Sec-
ond ACM Conference on Embedded Networked Sensor Systems
(SenSys’04), Baltimore, MD, Nov 2004.

7


